Sparse ICA via cluster-wise PCA - Archive ouverte HAL
Article Dans Une Revue Neurocomputing Année : 2006

Sparse ICA via cluster-wise PCA

Résumé

In this paper, it is shown that independent component analysis (ICA) of sparse signals (sparse ICA) can be seen as a cluster-wise principal component analysis (PCA). Consequently, Sparse ICA may be done by a combination of a clustering algorithm and PCA. For the clustering part, we use, in this paper, an algorithm inspired from K-means. The final algorithm is easy to implement for any number of sources. Experimental results points out the good performance of the method, whose the main restriction is to request an exponential growing of the sample number as the number of sources increases. Keywords: Independent Component Analysis 5ICA), Blind Source Separation (BSS), Sparse ICA, Principal Component Analysis (PCA).
Fichier non déposé

Dates et versions

hal-00802463 , version 1 (19-03-2013)

Identifiants

  • HAL Id : hal-00802463 , version 1

Citer

Zadeh Massouad Babaie, Christian Jutten, Ali Mansour. Sparse ICA via cluster-wise PCA. Neurocomputing, 2006, 69 (13-15), pp.1458-1466. ⟨hal-00802463⟩
154 Consultations
0 Téléchargements

Partager

More