Multifractal Analysis of functions on the Heisenberg Group
Résumé
In this article, we investigate the pointwise behaviors of functions on the Heisenberg group. We find wavelet characterizations for the global and local Hölder exponents. Then we prove some a priori upper bounds for the multifractal spectrum of all functions in a given Hölder, Sobolev or Besov space. These upper bounds turn out to be optimal, since in all cases they are reached by typical functions in the corresponding functional spaces.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...