Multifractal Analysis of functions on the Heisenberg Group - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

Multifractal Analysis of functions on the Heisenberg Group

Résumé

In this article, we investigate the pointwise behaviors of functions on the Heisenberg group. We find wavelet characterizations for the global and local Hölder exponents. Then we prove some a priori upper bounds for the multifractal spectrum of all functions in a given Hölder, Sobolev or Besov space. These upper bounds turn out to be optimal, since in all cases they are reached by typical functions in the corresponding functional spaces.
Fichier principal
Vignette du fichier
11_waveletsH1.pdf (1.46 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00801722 , version 1 (18-03-2013)

Identifiants

  • HAL Id : hal-00801722 , version 1

Citer

Stephane Seuret, François Vigneron. Multifractal Analysis of functions on the Heisenberg Group. 2013. ⟨hal-00801722⟩
108 Consultations
147 Téléchargements

Partager

More