The lambda-calculus with constructors: Syntax, confluence and separation - Archive ouverte HAL
Article Dans Une Revue Journal of Functional Programming Année : 2009

The lambda-calculus with constructors: Syntax, confluence and separation

Résumé

We present an extension of the lambda(eta)-calculus with a case construct that propagates through functions like a head linear substitution, and show that this construction permits to recover the expressiveness of ML-style pattern matching. We then prove that this system enjoys the Church-Rosser property using a semi-automatic 'divide and conquer' technique by which we determine all the pairs of commuting subsystems of the formalism (considering all the possible combinations of the nine primitive reduction rules). Finally, we prove a separation theorem similar to Böhm's theorem for the whole formalism.
Fichier non déposé

Dates et versions

hal-00800559 , version 1 (14-03-2013)

Identifiants

  • HAL Id : hal-00800559 , version 1

Citer

Ariel Arbiser, Alexandre Miquel, Alejandro Rios. The lambda-calculus with constructors: Syntax, confluence and separation. Journal of Functional Programming, 2009, 19 (5), pp.581-631. ⟨hal-00800559⟩
95 Consultations
0 Téléchargements

Partager

More