A priori Convergence Theory for Reduced-Basis Approximations of Single-Parametric Elliptic Partial Differential Equations - Archive ouverte HAL
Article Dans Une Revue Journal of Scientific Computing Année : 2002

A priori Convergence Theory for Reduced-Basis Approximations of Single-Parametric Elliptic Partial Differential Equations

Résumé

We consider "Lagrangian" reduced-basis methods for single-parameter symmetric coercive elliptic partial differential equations. We show that, for a logarithmic-(quasi-)uniform distribution of sample points, the reduced-basis approximation converges exponentially to the exact solution uniformly in parameter space. Furthermore, the convergence rate depends only weakly on the continuity-coercivity ratio of the operator: thus very low-dimensional approximations yield accurate solutions even for very wide parametric ranges. Numerical tests (reported elsewhere) corroborate the theoretical predictions.
Fichier principal
Vignette du fichier
reduced_basis_convergence_jsc.pdf (154.57 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00798410 , version 1 (08-03-2013)

Identifiants

  • HAL Id : hal-00798410 , version 1

Citer

Yvon Maday, Anthony T. Patera, Gabriel Turinici. A priori Convergence Theory for Reduced-Basis Approximations of Single-Parametric Elliptic Partial Differential Equations. Journal of Scientific Computing, 2002, 17 (1-4), pp.437-446. ⟨hal-00798410⟩
254 Consultations
459 Téléchargements

Partager

More