Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators - Archive ouverte HAL
Article Dans Une Revue Set-Valued and Variational Analysis Année : 2012

Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators

Résumé

We propose a primal-dual splitting algorithm for solving monotone inclusions involving a mixture of sums, linear compositions, and parallel sums of set-valued and Lipschitzian operators. An important feature of the algorithm is that the Lipschitzian operators present in the formulation can be processed individually via explicit steps, while the set-valued operators are processed individually via their resolvents. In addition, the algorithm is highly parallel in that most of its steps can be executed simultaneously. This work brings together and notably extends various types of structured monotone inclusion problems and their solution methods. The application to convex minimization problems is given special attention.
Fichier principal
Vignette du fichier
svva2.pdf (258.73 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00794044 , version 1 (25-02-2013)

Identifiants

Citer

Patrick Louis Combettes, Jean-Christophe Pesquet. Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators. Set-Valued and Variational Analysis, 2012, 20 (2), pp.307-330. ⟨10.1007/s11228-011-0191-y⟩. ⟨hal-00794044⟩
332 Consultations
342 Téléchargements

Altmetric

Partager

More