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Abstract

We propose a primal-dual splitting algorithm for solving monotone inclusions involving a mixture
of sums, linear compositions, and parallel sums of set-valued and Lipschitzian operators. An
important feature of the algorithm is that the Lipschitzian operators present in the formulation
can be processed individually via explicit steps, while the set-valued operators are processed
individually via their resolvents. In addition, the algorithm is highly parallel in that most of its
steps can be executed simultaneously. This work brings together and notably extends various
types of structured monotone inclusion problems and their solution methods. The application to
convex minimization problems is given special attention.

Keywords maximal monotone operator, monotone inclusion, nonsmooth convex optimization,
parallel sum, set-valued duality, splitting algorithm

Mathematics Subject Classifications (2010) 47H05, 49M29, 49M27, 90C25, 49N15.

∗Contact author: P. L. Combettes, plc@math.jussieu.fr, phone: +33 1 4427 6319, fax: +33 1 4427 7200. This

work was supported by the Agence Nationale de la Recherche under grants ANR-08-BLAN-0294-02 and ANR-09-

EMER-004-03.

1

plc@math.jussieu.fr
jean-christophe.pesquet@univ-paris-est.fr


1 Introduction

Duality theory occupies a central place in classical optimization [19, 24, 33, 40, 41]. Since the
mid 1960s it has expanded in various directions, e.g., variational inequalities [2, 17, 21, 23, 26, 34],
minimax and saddle point problems [27, 29, 32, 39], and, from a more global perspective, monotone
inclusions [5, 9, 10, 16, 31, 37, 38]. In the present paper, we propose an algorithm for solving the
following structured duality framework for monotone inclusions that encompasses the above cited
works. In this formulation, we denote by B�D the parallel sum of two set-valued operators B and
D (see (2.5)). This operation plays a central role in convex analysis and monotone operator theory.
In particular, B�D can be seen as a regularization of B by D, and � is naturally connected to
addition through duality since (B + D)−1 = B−1

�D−1. It is also strongly related to the infimal
convolution of functions through subdifferentials. We refer the reader to [8, 28, 35, 36, 43] and the
references therein for background on the parallel sum.

Problem 1.1 Let H be a real Hilbert space, let z ∈ H, let m be a strictly positive integer, let
A : H → 2H be maximally monotone, and let C : H → H be monotone and µ-Lipschitzian for some
µ ∈ ]0,+∞[. For every i ∈ {1, . . . ,m}, let Gi be a real Hilbert space, let ri ∈ Gi, let Bi : Gi → 2Gi be
maximally monotone, let Di : Gi → 2Gi be monotone and such that D−1

i is νi-Lipschitzian, for some
νi ∈ ]0,+∞[, and suppose that Li : H → Gi is a nonzero bounded linear operator. The problem is to
solve the primal inclusion

find x ∈ H such that z ∈ Ax+
m∑

i=1

L∗
i

(
(Bi�Di)(Lix− ri)

)
+ Cx, (1.1)

together with the dual inclusion

find v1 ∈ G1, . . . , vm ∈ Gm such that (∃x ∈ H)

{
z −

∑m
i=1

L∗
i vi ∈ Ax+ Cx

(∀i ∈ {1, . . . ,m}) vi ∈ (Bi�Di)(Lix− ri).

(1.2)

Problem 1.1 captures and extends various existing problem formulations. Here are some examples
that illustrate its versatility and the breadth of its scope.

Example 1.2 In Problem 1.1 set

m = 1, C : x 7→ 0, and D1 : y 7→

{
G1, if y = 0;

∅, if y 6= 0.
(1.3)

Then we recover a duality framework investigated in [10, 16, 37, 38], namely (we drop the subscript
‘1’ for brevity),

find (x, v) ∈ H ⊕ G such that

{
z ∈ Ax+ L∗

(
B(Lx− r)

)

−r ∈ −L
(
A−1(z − L∗v)

)
+B−1v.

(1.4)

Example 1.3 In Example 1.2, let G = H, r = z = 0, and L = Id . Then we obtain the duality
setting of [5, 31], i.e.,

find (x, u) ∈ H ⊕H such that

{
0 ∈ Ax+Bx

0 ∈ −A−1(−u) +B−1u.
(1.5)
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The special case of variational inequalities was first treated in [34].

Example 1.4 In Example 1.2, let A and B be the subdifferentials of lower semicontinuous convex
functions f : H → ]−∞,+∞] and g : G → ]−∞,+∞], respectively. Then, under suitable constraint
qualification, we obtain the classical Fenchel-Rockafellar duality framework [40], i.e.,





minimize
x∈H

f(x) + g(Lx− r)− 〈x | z〉

minimize
v∈G

f∗(z − L∗v) + g∗(v) + 〈v | r〉.
(1.6)

Example 1.5 In Problem 1.1, set C : x 7→ 0, z = 0, and (∀i ∈ {1, . . . ,m}) Gi = H, ri = 0, Li = Id ,
and Di = ρ−1

i Id , where ρi ∈ ]0,+∞[. Then it follows from [8, Proposition 23.6(ii)] that, for every
i ∈ {1, . . . ,m}, Bi�Di = (Id −JρiBi

)/ρi =
ρiBi is the Yosida approximation of index ρi of Bi. Thus,

(1.1) reduces to

find x ∈ H such that 0 ∈ Ax+

m∑

i=1

ρiBix. (1.7)

This primal problem is investigated in [13, Section 6.3]. In the case when m = 1, we obtain the
primal-dual problem (we drop the subscript ‘1’ for brevity)

find (x, u) ∈ H ⊕H such that

{
0 ∈ Ax+ ρBx

0 ∈ −A−1(−u) +B−1u+ ρu
(1.8)

investigated in [9].

Example 1.6 In Problem 1.1, setm = 1, G1 = G, L1 = L, z = 0, and r1 = 0, and let A and B1 be the
subdifferentials of lower semicontinuous convex functions f : H → ]−∞,+∞] and g : G → ]−∞,+∞],
respectively. In addition, let C be the gradient of a differentiable convex function h : H → R, and
let D be the subdifferential of a lower semicontinuous strongly convex function ℓ : G → ]−∞,+∞].
Then, under suitable constraint qualification, (1.1) assumes the form of the minimization problem

minimize
x∈H

f(x) + (g� ℓ)(Lx) + h(x), (1.9)

which can be rewritten as

minimize
x∈H, y∈G

f(x) + h(x) + g(y) + ℓ(Lx− y). (1.10)

In the special case when h = 0, G = H, L = Id , and ℓ is a quadratic coupling function, such
formulations have been investigated in [1, 4, 6, 12, 15].

Example 1.7 In Problem 1.1, set m = 1, G1 = H, L1 = Id , B1 = D−1

1
: x 7→ {0}, and z = r1 = 0.

Then (1.1) yields the inclusion 0 ∈ Ax+ Cx studied in [45], where an algorithm using explicit steps
for C was proposed.

Example 1.8 In Problem 1.1, set A : x 7→ {0} and C = Id . Furthermore, for every i ∈ {1, . . . ,m},
let Bi be the subdifferential of a lower semicontinuous convex function gi : Gi → ]−∞,+∞] and
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let D−1

i : y 7→ {0}. Then, under suitable constraint qualification, we obtain the primal-dual pair
considered in [14], namely

minimize
x∈H

m∑

i=1

gi(Lix− ri) +
1

2
‖x− z‖2 (1.11)

and

minimize
v1∈G1,..., vm∈Gm

1

2

∥∥∥∥∥z −
m∑

i=1

L∗
i vi

∥∥∥∥∥

2

+
m∑

i=1

(
g∗i (vi) + 〈vi | ri〉

)
. (1.12)

Example 1.9 The special case of Problem 1.1 in which

A : x 7→ {0}, C : x 7→ 0, and (∀i ∈ {1, . . . ,m}) Di : y 7→

{
Gi, if y = 0;

∅, if y 6= 0
(1.13)

yields the primal-dual pair

find x ∈ H such that z ∈

m∑

i=1

L∗
i

(
Bi(Lix− ri)

)
(1.14)

and

find v1 ∈ G1, . . . , vm ∈ Gm such that

{∑m
i=1

L∗
i vi = z

(∃x ∈ H)(∀i ∈ {1, . . . ,m}) vi ∈ Bi(Lix− ri).
(1.15)

This framework is considered in [10, Theorem 3.8].

Conceptually, the primal problem (1.1) could be recast in the form of (1.14), namely

find x ∈ H such that z ∈

m∑

i=0

L∗
i

(
Ei(Lix− ri)

)
, (1.16)

where

G0 = H, E0 = A + C, L0 = Id , r0 = 0, and (∀i ∈ {1, . . . ,m}) Ei = Bi�Di. (1.17)

In turn, one could contemplate the possibility of using the primal-dual algorithm proposed in [10,
Theorem 3.8] to solve Problem 1.1. However, this algorithm requires the computation of the resolvents
of the operators A + C and (B−1

i +D−1

i )1≤i≤m, which are usually intractable. Thus, for numerical
purposes, Problem 1.1 cannot be reduced to Example 1.9. Let us stress that, even in the instance
of the simple inclusion 0 ∈ Ax + Cx, it is precisely the objective of the forward-backward splitting
algorithm and its variants [8, 15, 30, 44, 45] to circumvent the computation of the resolvent of A+C,
as would impose a naive application of the proximal point algorithm [42].

The goal of this paper is to propose a fully split algorithm for solving Problem 1.1 that employs
the operators A, (Li)1≤i≤m, (Bi)1≤i≤m, (Di)1≤i≤m, and C separately. An important feature of the
algorithm is to activate the single-valued operators (Li)1≤i≤m, (D−1

i )1≤i≤m, and C through explicit
steps. In addition, it exhibits a highly parallel structure which allows for the simultaneous activation
of the operators involved. This new splitting method goes significantly beyond the state-of-the-art,
which is limited to specific subclasses of Problem 1.1.

In Section 2, we briefly set our notation. The new splitting method is proposed in Section 3, where
we also prove its convergence. The special case of minimization problems is discussed in Section 4.
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2 Notation and background

Our notation is standard. We refer the reader to [8, 46] for background on convex analysis and
monotone operator theory. Hereafter, K is a real Hilbert space.

We denote the scalar product of a Hilbert space by 〈· | ·〉 and the associated norm by ‖ · ‖. The
symbols ⇀ and → denote respectively weak and strong convergence. Moreover, G1 ⊕ · · · ⊕Gm is the
Hilbert direct sum of the Hilbert spaces (Gi)1≤i≤m in Problem 1.1, i.e., their product space equipped
with the norm (yi)1≤i≤m 7→

√∑m
i=1

‖yi‖2. For every i ∈ {1, . . . ,m}, let Ti be a mapping from Gi to
some set R. Then

m⊕

i=1

Ti :
m⊕

i=1

Gi → R : (yi)1≤i≤m 7→
m∑

i=1

Tiyi. (2.1)

Let M : K → 2K be a set-valued operator. We denote by ranM =
{
u ∈ K

∣∣ (∃x ∈ K) u ∈ Mx
}

the range of M , by domM =
{
x ∈ K

∣∣Mx 6= ∅
}
its domain, by zerM =

{
x ∈ K

∣∣ 0 ∈ Mx
}
its set of

zeros, by graM =
{
(x, u) ∈ K ×K

∣∣ u ∈ Mx
}
its graph, and by M−1 its inverse, i.e., the set-valued

operator with graph
{
(u, x) ∈ K ×K

∣∣ u ∈ Mx
}
. The resolvent of M is

JM = (Id +M)−1, (2.2)

where Id denotes the identity operator on K. Moreover, M is monotone if

(∀(x, u) ∈ graM)(∀(y, v) ∈ graM) 〈x− y | u− v〉 ≥ 0, (2.3)

and maximally so if there exists no monotone operator M̃ : K → 2K such that graM ⊂ gra M̃ 6=
graM . We say that M is uniformly monotone at x ∈ domM if there exists an increasing function
φ : [0,+∞[ → [0,+∞] that vanishes only at 0 such that

(∀u ∈ Mx)(∀(y, v) ∈ graM) 〈x− y | u− v〉 ≥ φ(‖x− y‖). (2.4)

The parallel sum of two set-valued operators M1 and M2 from K to 2K is

M1 �M2 = (M−1

1
+M−1

2
)−1. (2.5)

We denote by Γ0(K) the class of lower semicontinuous convex functions ϕ : K → ]−∞,+∞] such
that domϕ =

{
x ∈ K

∣∣ ϕ(x) < +∞
}
6= ∅. Now let ϕ ∈ Γ0(K). The conjugate of ϕ is the function

ϕ∗ ∈ Γ0(K) defined by ϕ∗ : u 7→ supx∈K(〈x | u〉−ϕ(x)), and the subdifferential of ϕ is the maximally
monotone operator

∂ϕ : K → 2K : x 7→
{
u ∈ K

∣∣ (∀y ∈ K) 〈y − x | u〉+ ϕ(x) ≤ ϕ(y)
}

(2.6)

with inverse given by
(∂ϕ)−1 = ∂ϕ∗. (2.7)

Moreover, for every x ∈ K, ϕ+‖x−·‖2/2 possesses a unique minimizer, which is denoted by proxϕ x.
We have

proxϕ = J∂ϕ. (2.8)
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We say that ϕ is ν-strongly convex for some ν ∈ ]0,+∞[ if ϕ − ν‖ · ‖2/2 is convex, and that ϕ is
uniformly convex at x ∈ domϕ if there exists an increasing function φ : [0,+∞[ → [0,+∞] that
vanishes only at 0 such that

(∀y ∈ domϕ)(∀α ∈ ]0, 1[) ϕ(αx+ (1− α)y) + α(1− α)φ(‖x − y‖) ≤ αϕ(x) + (1− α)ϕ(y). (2.9)

The infimal convolution of two functions ϕ1 and ϕ2 from K to ]−∞,+∞] is

ϕ1 �ϕ2 : K → [−∞,+∞] : x 7→ inf
y∈K

(
ϕ1(y) + ϕ2(x− y)

)
. (2.10)

Finally, let S be a convex subset of K. The strong relative interior of S, i.e., the set of points
x ∈ S such that the cone generated by −x+ S is a closed vector subspace of K, is denoted by sriS,
and the relative interior of S, i.e., the set of points x ∈ S such that the cone generated by −x+ S is
a vector subspace of K, is denoted by riS.

3 Main result

Our main result is the following theorem, which presents our new splitting algorithm and describes
its asymptotic behavior.

Theorem 3.1 In Problem 1.1, suppose that

z ∈ ran

(
A+

m∑

i=1

L∗
i (Bi �Di)(Li · −ri) + C

)
. (3.1)

Let (a1,n)n∈N, (b1,n)n∈N, and (c1,n)n∈N be absolutely summable sequences in H and, for every
i ∈ {1, . . . ,m}, let (a2,i,n)n∈N, (b2,i,n)n∈N, and (c2,i,n)n∈N be absolutely summable sequences in Gi.
Furthermore, set

β = max{µ, ν1, . . . , νm}+

√√√√
m∑

i=1

‖Li‖2, (3.2)

let x0 ∈ H, let (v1,0, . . . , vm,0) ∈ G1 ⊕ · · · ⊕ Gm, let ε ∈ ]0, 1/(β + 1)[, let (γn)n∈N be a sequence in
[ε, (1 − ε)/β], and set

(∀n ∈ N)



y1,n = xn − γn
(
Cxn +

∑m
i=1

L∗
i vi,n + a1,n

)

p1,n = JγnA(y1,n + γnz) + b1,n
For i = 1, . . . ,m

y2,i,n = vi,n + γn
(
Lixn −D−1

i vi,n + a2,i,n
)

p2,i,n = J
γnB

−1

i

(y2,i,n − γnri) + b2,i,n

q2,i,n = p2,i,n + γn
(
Lip1,n −D−1

i p2,i,n + c2,i,n
)

vi,n+1 = vi,n − y2,i,n + q2,i,n.
q1,n = p1,n − γn

(
Cp1,n +

∑m
i=1

L∗
i p2,i,n + c1,n

)

xn+1 = xn − y1,n + q1,n.

(3.3)

Then the following hold.
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(i)
∑

n∈N ‖xn − p1,n‖
2 < +∞ and (∀i ∈ {1, . . . ,m})

∑
n∈N ‖vi,n − p2,i,n‖

2 < +∞.

(ii) There exist a solution x to (1.1) and a solution (v1, . . . , vm) to (1.2) such that the following
hold.

(a) z −
∑m

j=1
L∗
jvj ∈ Ax+ Cx and (∀i ∈ {1, . . . ,m}) Lix− ri ∈ B−1

i vi +D−1

i vi.

(b) (∀i ∈ {1, . . . ,m}) −ri ∈ −Li

(
(A−1

�C−1)
(
z −

∑m
j=1

L∗
jvj
))

+B−1

i vi +D−1

i vi.

(c) xn ⇀ x and p1,n ⇀ x.

(d) (∀i ∈ {1, . . . ,m}) vi,n ⇀ vi and p2,i,n ⇀ vi.

(e) Suppose that A or C is uniformly monotone at x. Then xn → x and p1,n → x.

(f) Suppose that, for some i ∈ {1, . . . ,m}, B−1

i or D−1

i is uniformly monotone at vi. Then
vi,n → vi and p2,i,n → vi.

Proof. Let us first rewrite (3.3) as

(∀n ∈ N)



y1,n = xn − γn
(
Cxn +

∑m
i=1

L∗
i vi,n + a1,n

)

For i = 1, . . . ,m⌊
y2,i,n = vi,n + γn

(
Lixn −D−1

i vi,n + a2,i,n
)

p1,n = JγnA(y1,n + γnz) + b1,n
For i = 1, . . . ,m⌊
p2,i,n = J

γnB
−1

i

(y2,i,n − γnri) + b2,i,n

q1,n = p1,n − γn
(
Cp1,n +

∑m
i=1

L∗
i p2,i,n + c1,n

)

For i = 1, . . . ,m⌊
q2,i,n = p2,i,n + γn

(
Lip1,n −D−1

i p2,i,n + c2,i,n
)

xn+1 = xn − y1,n + q1,n
For i = 1, . . . ,m⌊
vi,n+1 = vi,n − y2,i,n + q2,i,n.

(3.4)

Next, let us introduce the Hilbert space

K = H⊕ G1 ⊕ · · · ⊕ Gm, (3.5)

and the operators

M : K → 2K

(x, v1, . . . , vm) 7→ (−z +Ax)× (r1 +B−1

1
v1)× · · · × (rm +B−1

m vm)
(3.6)

and

Q : K → K

(x, v1, . . . , vm) 7→
(
Cx+ L∗

1v1 + · · ·+ L∗
mvm,−L1x+D−1

1
v1, . . . ,−Lmx+D−1

m vm
)
.

(3.7)

Since the operator A and (Bi)1≤i≤m are maximally monotone, so is M by [8, Propositions 20.22
and 20.23]. In addition, [8, Propositions 23.15(ii) and 23.16] yield

(∀γ ∈ ]0,+∞[)(∀(x, v1, . . . , vm) ∈ K)

JγM (x, v1, . . . , vm) =
(
JγA(x+ γz), J

γB−1

1

(v1 − γr1), . . . , JγB−1
m

(vm − γrm)
)
. (3.8)
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Let us now examine the properties of Q. To this end, let (x, v1, . . . , vm) and (y,w1, . . . , wm) be two
points in K. Using the monotonicity of the operators C and (D−1

i )1≤i≤m, we derive from (3.7) that

〈(x, v1, . . . , vm)− (y,w1, . . . , wm) | Q(x, v1, . . . , vm)−Q(y,w1, . . . , wm)〉

=
〈
(x− y, v1 − w1, . . . , vm − wm)

∣∣ (Cx− Cy + L∗
1(v1 − w1) + · · ·+ L∗

m(vm − wm),

− L1(x− y) +D−1

1
v1 −D−1

1
w1, . . . ,−Lm(x− y) +D−1

m vm −D−1
m wm

)〉

= 〈x− y | Cx−Cy〉+
m∑

i=1

〈
vi − wi | D

−1

i vi −D−1

i wi

〉

+

m∑

i=1

(
〈x− y | L∗

i (vi − wi)〉 − 〈vi − wi | Li(x− y)〉
)

= 〈x− y | Cx−Cy〉+

m∑

i=1

〈
vi − wi | D

−1

i vi −D−1

i wi

〉

≥ 0. (3.9)

Hence, Q is monotone. Using the triangle inequality, the Lipschitzianity assumptions, the Cauchy-
Schwarz inequality, and (3.2), we obtain
∥∥Q(x, v1, . . . , vm)−Q(y,w1, . . . , wm)

∥∥

=

∥∥∥∥
(
Cx− Cy,D−1

1
v1 −D−1

1
w1, . . . ,D

−1
m vm −D−1

m wm

)

+

( m∑

i=1

L∗
i (vi − wi),−L1(x− y), . . . ,−Lm(x− y)

)∥∥∥∥

≤

∥∥∥∥
(
Cx− Cy,D−1

1
v1 −D−1

1
w1, . . . ,D

−1
m vm −D−1

m wm

)∥∥∥∥

+

∥∥∥∥
( m∑

i=1

L∗
i (vi − wi),−L1(x− y), . . . ,−Lm(x− y)

)∥∥∥∥

=

√√√√‖Cx− Cy‖2 +

m∑

i=1

∥∥D−1

i vi −D−1

i wi

∥∥2 +

√√√√
∥∥∥∥

m∑

i=1

L∗
i (vi − wi)

∥∥∥∥
2

+

m∑

i=1

‖Li(x− y)‖2

≤

√√√√µ2‖x− y‖2 +

m∑

i=1

ν2i ‖vi − wi‖2 +

√√√√
( m∑

i=1

‖Li‖ ‖vi − wi‖

)2

+

m∑

i=1

‖Li‖2 ‖x− y‖2

≤ max{µ, ν1, . . . , νm}

√√√√‖x− y‖2 +

m∑

i=1

‖vi − wi‖2

+

√√√√
( m∑

i=1

‖Li‖2
)( m∑

i=1

‖vi − wi‖2
)
+

( m∑

i=1

‖Li‖2
)
‖x− y‖2

= β‖(x, v1, . . . , vm)− (y,w1, . . . , wm)‖. (3.10)

To sum up, we have shown that

M is maximally monotone and Q is monotone and β-Lipschitzian. (3.11)
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Next, let us observe that

(3.1) ⇔ (∃x ∈ H) z ∈ Ax+

m∑

i=1

L∗
i

(
(Bi�Di)(Lix− ri)

)
+Cx

⇔ (∃ (x, v1, . . . , vm) ∈ K)





z ∈ Ax+
∑m

i=1
L∗
i vi + Cx

v1 ∈ (B1 �D1)(L1x− r1)
...

vm ∈ (Bm�Dm)(Lmx− rm)

⇔ (∃ (x, v1, . . . , vm) ∈ K)





0 ∈ −z +Ax+
∑m

i=1
L∗
i vi + Cx

0 ∈ r1 +B−1

1
v1 +D−1

1
v1 − L1x

...

0 ∈ rm +B−1
m vm +D−1

m vm − Lmx

⇔ (∃ (x, v1, . . . , vm) ∈ K) (0, . . . , 0) ∈ (−z +Ax)× (r1 +B−1

1
v1)× · · · × (rm +B−1

m vm)

+ (L∗
1v1 + · · ·+ L∗

mvm + Cx,D−1

1
v1 − L1x, . . . ,D

−1
m vm − Lmx)

⇔ (∃ (x, v1, . . . , vm) ∈ K) (0, . . . , 0) ∈ (M +Q)(x, v1, . . . , vm). (3.12)

In other words,
zer(M +Q) 6= ∅. (3.13)

Now, let us set

(∀n ∈ N)





xn = (xn, v1,n, . . . , v1,n)

yn = (y1,n, y2,1,n, . . . , y2,m,n)

pn = (p1,n, p2,1,n, . . . , p2,m,n)

qn = (q1,n, q2,1,n, . . . , q2,m,n)

and





an = (a1,n, a2,1,n, . . . , a2,m,n)

bn = (b1,n, b2,1,n, . . . , b2,m,n)

cn = (c1,n, c2,1,n, . . . , c2,m,n).

(3.14)

We first observe that our assumptions imply that

∑

n∈N

‖an‖ < +∞,
∑

n∈N

‖bn‖ < +∞, and
∑

n∈N

‖cn‖ < +∞. (3.15)

Furthermore, it follows from (3.7), (3.8), and (3.14), that (3.4) assumes in K the form of the error-
tolerant forward-backward-forward algorithm

(∀n ∈ N)



yn = xn − γn(Qxn + an)
pn = JγnM yn + bn
qn = pn − γn(Qpn + cn)
xn+1 = xn − yn + qn.

(3.16)

(i): It follows from (3.11), (3.13), (3.15), (3.16), and [10, Theorem 2.5(i)] that
∑

n∈N ‖xn−pn‖
2 <

+∞.

(ii): It follows from [10, Theorem 2.5(ii)] that there exists x ∈ zer(M +Q) such that

xn ⇀ x and pn ⇀ x. (3.17)
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Let us set
x = (x, v1, . . . , vm). (3.18)

In view of (3.6) and (3.7),

x ∈ zer(M +Q) ⇔





0 ∈ −z +Ax+
∑m

i=1
L∗
i vi + Cx

0 ∈ r1 +B−1

1
v1 +D−1

1
v1 − L1x

...

0 ∈ rm +B−1
m vm +D−1

m vm − Lmx

⇔





z −
∑m

j=1
L∗
jvj ∈ Ax+ Cx

L1x− r1 ∈ (B−1

1
+D−1

1
)v1

...

Lmx− rm ∈ (B−1
m +D−1

m )vm

(3.19)

⇔





z −
∑m

j=1
L∗
jvj ∈ Ax+ Cx

v1 ∈ (B1�D1)(L1x− r1)
...

vm ∈ (Bm�Dm)(Lmx− rm)

(3.20)

⇒





z −
∑m

j=1
L∗
jvj ∈ Ax+ Cx

L∗
1v1 ∈ L∗

1

(
(B1�D1)(L1x− r1)

)

...

L∗
mvm ∈ L∗

m

(
(Bm�Dm)(Lmx− rm)

)

⇒ z ∈ Ax+
m∑

i=1

L∗
i

(
(Bi �Di)(Lix− ri)

)
+ Cx

⇔ x solves (1.1). (3.21)

On the other hand, (3.20) means that

(v1, . . . , vm) solves (1.2). (3.22)

(ii)(a): This follows from (3.19).

(ii)(b): We derive from (3.19) that

x ∈ (A+ C)−1

(
z −

m∑

j=1

L∗
jvj

)
and (∀i ∈ {1, . . . ,m}) Lix− ri ∈ (B−1

i +D−1

i )vi. (3.23)

Hence,

(∀i ∈ {1, . . . ,m})

{
−Lix ∈ −Li

(
(A−1

�C−1)
(
z −

∑m
j=1

L∗
jvj
))

Lix− ri ∈ (B−1

i +D−1

i )vi.
(3.24)

Thus,

(∀i ∈ {1, . . . ,m}) − ri ∈ −Li

(
(A−1

�C−1)

(
z −

m∑

j=1

L∗
jvj

))
+B−1

i vi +D−1

i vi. (3.25)
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(ii)(c): This follows from (3.17), (3.18), and (3.21).

(ii)(d): This follows from (3.17), (3.18), and (3.22).

(ii)(e): Let us set

(∀n ∈ N)

{
ỹ1,n = xn − γn

(
Cxn +

∑m
j=1

L∗
jvj,n

)

p̃1,n = JγnA(ỹ1,n + γnz)
(3.26)

and

(∀i ∈ {1, . . . ,m})(∀n ∈ N)

{
ỹ2,i,n = vi,n + γn(Lixn −D−1

i vi,n)

p̃2,i,n = J
γnB

−1

i

(ỹ2,i,n − γnri).
(3.27)

Then, in view of (3.3),

(∀n ∈ N) ‖y1,n − ỹ1,n‖ ≤ γn‖a1,n‖ ≤ β−1‖a1,n‖ (3.28)

and, using the nonexpansiveness of the resolvents [8, Proposition 23.7], we obtain

(∀n ∈ N) ‖p1,n − p̃1,n‖ ≤ ‖JγnA(y1,n + γnz) + b1,n − JγnA(ỹ1,n + γnz)‖

≤ ‖y1,n − ỹ1,n‖+ ‖b1,n‖

≤ β−1‖a1,n‖+ ‖b1,n‖. (3.29)

Since the sequences (a1,n)n∈N and (b1,n)n∈N are absolutely summable, it follows that

y1,n − ỹ1,n → 0 and p1,n − p̃1,n → 0. (3.30)

Using the same arguments, we derive from (3.3) and (3.27) that

(∀i ∈ {1, . . . ,m}) y2,i,n − ỹ2,i,n → 0 and p2,i,n − p̃2,i,n → 0. (3.31)

On the other hand, we deduce from (ii)(a) that there exists u ∈ H such that

u ∈ Ax and z = u+

m∑

j=1

L∗
jvj + Cx, (3.32)

and that
(∀i ∈ {1, . . . ,m}) Lix− ri −D−1

i vi ∈ B−1

i vi. (3.33)

In addition, (3.26) yields

(∀n ∈ N) γ−1
n (xn − p̃1,n)− Cxn −

m∑

j=1

L∗
jvj,n + z ∈ Ap̃1,n (3.34)

while (3.27) yields

(∀i ∈ {1, . . . ,m})(∀n ∈ N) γ−1
n (vi,n − p̃2,i,n) + Lixn −D−1

i vi,n − ri ∈ B−1

i p̃2,i,n. (3.35)

Now let us set

(∀n ∈ N)

{
α1,n = ‖xn − p̃1,n‖

(
ε−1‖p̃1,n − x‖+ µ‖xn − x‖+

∑m
i=1

‖Li‖ ‖vi,n − vi‖
)

α2,n =
∑m

i=1
(ε−1 + νi)‖vi,n − p̃2,i,n‖ ‖p̃2,i,n − vi‖.

(3.36)
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It follows from (i), (ii)(c), (ii)(d), (3.30), and (3.31) that

α1,n → 0 and α2,n → 0. (3.37)

Using the Cauchy-Schwarz inequality, and the Lipschitzianity and monotonicity of C, we obtain

(∀n ∈ N) α1,n +

〈
xn − x

∣∣∣∣
m∑

i=1

L∗
i (vi − vi,n)

〉

≥ ‖xn − p̃1,n‖
(
ε−1‖p̃1,n − x‖+ ‖Cxn − Cx‖

)
+

〈
p̃1,n − xn

∣∣∣∣
m∑

i=1

L∗
i (vi − vi,n)

〉

+

〈
xn − x

∣∣∣∣
m∑

i=1

L∗
i (vi − vi,n)

〉

= ‖xn − p̃1,n‖
(
ε−1‖p̃1,n − x‖+ ‖Cxn − Cx‖

)
+

〈
p̃1,n − x

∣∣∣∣
m∑

i=1

L∗
i (vi − vi,n)

〉

≥

〈
p̃1,n − x

∣∣∣∣ γ
−1
n (xn − p̃1,n) +

m∑

i=1

L∗
i (vi − vi,n)

〉
+ 〈p̃1,n − xn | Cx− Cxn〉

=

〈
p̃1,n − x

∣∣∣∣ γ
−1
n (xn − p̃1,n)−

m∑

i=1

L∗
i vi,n − Cxn +

m∑

i=1

L∗
i vi + Cx

〉
+ 〈x− xn | Cx− Cxn〉

=

〈
p̃1,n − x

∣∣∣∣ γ
−1
n (xn − p̃1,n)−

m∑

i=1

L∗
i vi,n − Cxn + z − u

〉
+ 〈x− xn | Cx− Cxn〉

≥

〈
p̃1,n − x

∣∣∣∣
(
γ−1
n (xn − p̃1,n)−

m∑

i=1

L∗
i vi,n − Cxn + z

)
− u

〉
. (3.38)

Now suppose that A is uniformly monotone at x. Then, in view of (3.32), (3.34), and (3.38), there
exists an increasing function φA : [0,+∞[ → [0,+∞] that vanishes only at 0 such that

(∀n ∈ N) α1,n +

〈
xn − x

∣∣∣∣
m∑

i=1

L∗
i (vi − vi,n)

〉
≥ φA(‖p̃1,n − x‖). (3.39)

On the other hand, it follows from (3.36), the Lipschitzianity of the operators (D−1

i )1≤i≤m, (3.33),
(3.35), and the monotonicity of the operators (B−1

i )1≤i≤m and (D−1

i )1≤i≤m that

(∀n ∈ N) α2,n +

〈
xn − x

∣∣∣∣
m∑

i=1

L∗
i (p̃2,i,n − vi)

〉

≥
m∑

i=1

〈
γ−1
n (vi,n − p̃2,i,n)−D−1

i vi,n +D−1

i p̃2,i,n + Li(xn − x) | p̃2,i,n − vi
〉

=

m∑

i=1

(〈
γ−1
n (vi,n − p̃2,i,n) + Lixn −D−1

i vi,n − ri − (Lix− ri −D−1

i vi) | p̃2,i,n − vi
〉

+
〈
D−1

i p̃2,i,n −D−1

i vi | p̃2,i,n − vi
〉)

≥ 0. (3.40)

12



Adding (3.39) and (3.40) yields

(∀n ∈ N) α1,n + α2,n +

〈
xn − x

∣∣∣∣
m∑

i=1

L∗
i (p̃2,i,n − vi,n)

〉
≥ φA(‖p̃1,n − x‖). (3.41)

It then follows from (3.37), (ii)(c), (i), (3.31), and [8, Lemma 2.41(iii)] that φA(‖p̃1,n − x‖) → 0 and,
in turn, that p̃1,n → x. Hence, in view of (i) and (3.30), we get xn → x and p1,n → x. Likewise, if C
is uniformly monotone at x, there exists an increasing function φC : [0,+∞[ → [0,+∞] that vanishes
only at 0 such that

(∀n ∈ N) α1,n + α2,n +

〈
xn − x

∣∣∣∣
m∑

i=1

L∗
i (p̃2,i,n − vi,n)

〉
≥ φC(‖xn − x‖), (3.42)

and we reach the same conclusion.

(ii)(f): Suppose that B−1

i is uniformly monotone at vi for some i ∈ {1, . . . ,m}. Then, proceeding
as in (3.40), there exists an increasing function φBi

: [0,+∞[ → [0,+∞] that vanishes only at 0 such
that

(∀n ∈ N) α2,n +

〈
xn − x

∣∣∣∣
m∑

j=1

L∗
j (p̃2,j,n − vj)

〉

≥
m∑

j=1

(〈
γ−1
n (vj,n − p̃2,j,n) + Ljxn −D−1

j vj,n − rj − (Ljx− rj −D−1

j vj) | p̃2,j,n − vj

〉

+
〈
D−1

j p̃2,j,n −D−1

j vj | p̃2,j,n − vj

〉)

≥
m∑

j=1

〈
γ−1
n (vj,n − p̃2,j,n) + Ljxn −D−1

j vj,n − rj − (Ljx− rj −D−1

j vj) | p̃2,j,n − vj

〉

≥
〈
γ−1
n (vi,n − p̃2,i,n) + Lixn −D−1

i vi,n − ri − (Lix− ri −D−1

i vi) | p̃2,i,n − vi
〉

≥ φBi
(‖p̃2,i,n − vi‖). (3.43)

On the other hand, according to (3.38),

(∀n ∈ N) α1,n +

〈
xn − x

∣∣∣∣
m∑

j=1

L∗
j(vj − vj,n)

〉
≥ 0. (3.44)

Hence,

(∀n ∈ N) α1,n + α2,n +

〈
xn − x

∣∣∣∣
m∑

j=1

L∗
j (p̃2,j,n − vj,n)

〉
≥ φBi

(‖p̃2,i,n − vi‖). (3.45)

By proceeding as previously, we infer that p̃2,i,n → vi and hence, via (3.31) and (i), that p2,i,n → vi
and vi,n → vi. If D

−1

i is uniformly monotone at vi, the same arguments lead to these conclusions.

In the following remarks, we comment on the structure of the proposed algorithm and its relation
to existing work.
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Remark 3.2 Here are some observations regarding the structure of algorithm (3.3).

(i) The algorithm achieves full splitting in that each of the operators appearing in Problem 1.1 is
used separately.

(ii) The algorithm uses explicit steps for the single-valued operators and implicit steps for the
set-valued operators. Since explicit steps are typically much easier to implement than implicit
steps, the algorithm therefore exploits efficiently the properties of the operators.

(iii) The sequences (a1,n)n∈N, (b1,n)n∈N, and (c1,n)n∈N, and, for every i ∈ {1, . . . ,m}, (a2,i,n)n∈N,
(b2,i,n)n∈N, and (c2,i,n)n∈N relax the requirement for exact evaluations of the operators over the
course of the iterations.

(iv) Most of the elementary steps in (3.3) can be executed in parallel.

(v) The update of the variable p2,i,n can also be carried out using the resolvent of Bi since [8,
Proposition 23.18] J

γnB
−1

i

(y2,i,n − γnri) = y2,i,n − γnri − γnJγ−1
n Bi

(γ−1
n (y2,i,n − γnri)).

Remark 3.3 Some noteworthy connections between Theorem 3.1 and existing work are the follow-
ing.

(i) Unlike most splitting methods, the proposed algorithm is designed to solve explicitly a dual
problem.

(ii) In the special case when m = 1 and D1 is as in (1.3), the primal problem (1.1) reduces to (we
drop the subscript ‘1’ for brevity)

find x ∈ H such that z ∈ Ax+ L∗
(
B(Lx− r)

)
+ Cx, (3.46)

the dual problem (1.2) reduces to

find v ∈ G such that − r ∈ −L
(
(A+ C)−1(z − L∗v)

)
+B−1v, (3.47)

and the algorithm is governed by the iteration



y1,n = xn − γn
(
Cxn + L∗vn + a1,n

)

y2,n = vn + γn(Lxn + a2,n)
p1,n = JγnA(y1,n + γnz) + b1,n
p2,n = JγnB−1(y2,n − γnr) + b2,n
q1,n = p1,n − γn

(
Cp1,n + L∗p2,n + c1,n

)

q2,n = p2,n + γn(Lp1,n + c2,n)
xn+1 = xn − y1,n + q1,n
vn+1 = vn − y2,n + q2,n.

(3.48)

On the one hand, if C : x 7→ 0, we recover the primal-dual setting of [10] and its algorithm
([10, Eq. (3.1)]). On the other hand, if L : x 7→ 0, B : y 7→ {0}, z = 0, and r = 0, (3.46) yields
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the problem studied in [45], and (3.48) without error terms and dual variables yields a primal
algorithm proposed in that paper, namely



y1,n = xn − γnCxn
p1,n = JγnAy1,n
q1,n = p1,n − γnCp1,n
xn+1 = xn − y1,n + q1,n.

(3.49)

Let us note that, even when we specialize (3.46) to G = H and L = Id , there does not appear to
exist an alternative algorithm that splits A, B, and C and uses explicit steps on the Lipschitzian
operator C.

(iii) When C : x 7→ 0 and, for every i ∈ {1, . . . ,m}, D−1

i : y 7→ {0}, we recover the primal-dual
setting of [10, Theorem 3.8]. However, the algorithm we obtain is different from that proposed
in that paper, and novel.

(iv) In general, the weak convergence results of Theorem 3.1(ii) cannot be improved to strong
convergence without additional hypotheses on the operators such as those described in (ii)(e)
and (ii)(f). Indeed, in the special case when (1.1) reduces to the problem of finding a zero of A,
the primal component of (3.3) reduces to the proximal point algorithm, namely (set C : x 7→ 0
in (3.49))

(∀n ∈ N) xn+1 = JγnAxn, (3.50)

which is known to converge weakly but not strongly [7, 25].

4 Minimization problems

The proposed monotone operator splitting algorithm can be applied to a broader class of problems
than that within the reach of existing splitting methods. It has therefore potential applications
in the areas in which these methods have been used, e.g., partial differential equations [21, 30],
mechanics [22, 31], variational inequalities [8, 18, 44], game theory [11], traffic theory [20], and
evolution equations [3]. In this section, we focus on the application of the results of Section 3 to
convex minimization problems.

Problem 4.1 Let H be a real Hilbert space, let z ∈ H, let m be a strictly positive integer, let
f ∈ Γ0(H), and let h : H → R be convex and differentiable with a µ-Lipschitzian gradient for some
µ ∈ ]0,+∞[. For every i ∈ {1, . . . ,m}, let Gi be a real Hilbert space, let ri ∈ Gi, let gi ∈ Γ0(Gi),
let ℓi ∈ Γ0(Gi) be 1/νi-strongly convex, for some νi ∈ ]0,+∞[, and suppose that Li : H → Gi is a
nonzero bounded linear operator. Consider the problem

minimize
x∈H

f(x) +

m∑

i=1

(gi � ℓi)(Lix− ri) + h(x)− 〈x | z〉, (4.1)

and the dual problem

minimize
v1∈G1,...,vm∈Gm

(
f∗

�h∗
)(

z −

m∑

i=1

L∗
i vi

)
+

m∑

i=1

(
g∗i (vi) + ℓ∗i (vi) + 〈vi | ri〉

)
. (4.2)
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The following result is an offspring of Theorem 3.1.

Theorem 4.2 In Problem 4.1, suppose that

z ∈ ran

(
∂f +

m∑

i=1

L∗
i (∂gi �∂ℓi)(Li · −ri) +∇h

)
. (4.3)

Let (a1,n)n∈N, (b1,n)n∈N, and (c1,n)n∈N be absolutely summable sequences in H and, for every
i ∈ {1, . . . ,m}, let (a2,i,n)n∈N, (b2,i,n)n∈N, and (c2,i,n)n∈N be absolutely summable sequences in Gi.
Furthermore, set

β = max{µ, ν1, . . . , νm}+

√√√√
m∑

i=1

‖Li‖2, (4.4)

let x0 ∈ H, let (v1,0, . . . , vm,0) ∈ G1 ⊕ · · · ⊕ Gm, let ε ∈ ]0, 1/(β + 1)[, let (γn)n∈N be a sequence in
[ε, (1 − ε)/β], and set

(∀n ∈ N)



y1,n = xn − γn
(
∇h(xn) +

∑m
i=1

L∗
i vi,n + a1,n

)

p1,n = proxγnf (y1,n + γnz) + b1,n
For i = 1, . . . ,m

y2,i,n = vi,n + γn(Lixn −∇ℓ∗i (vi,n) + a2,i,n)
p2,i,n = proxγng∗i (y2,i,n − γnri) + b2,i,n
q2,i,n = p2,i,n + γn

(
Lip1,n −∇ℓ∗i (p2,i,n) + c2,i,n

)

vi,n+1 = vi,n − y2,i,n + q2,i,n.
q1,n = p1,n − γn

(
∇h(p1,n) +

∑m
i=1

L∗
i p2,i,n + c1,n

)

xn+1 = xn − y1,n + q1,n.

(4.5)

Then the following hold.

(i)
∑

n∈N ‖xn − p1,n‖
2 < +∞ and (∀i ∈ {1, . . . ,m})

∑
n∈N ‖vi,n − p2,i,n‖

2 < +∞.

(ii) There exist a solution x to (4.1) and a solution (v1, . . . , vm) to (4.2) such that the following
hold.

(a) z −
∑m

j=1
L∗
jvj ∈ ∂f(x) +∇h(x) and (∀i ∈ {1, . . . ,m}) Lix− ri ∈ ∂g∗i (vi) +∇ℓ∗i (vi).

(b) xn ⇀ x and p1,n ⇀ x.

(c) (∀i ∈ {1, . . . ,m}) vi,n ⇀ vi and p2,i,n ⇀ vi.

(d) Suppose that f or h is uniformly convex at x. Then xn → x and p1,n → x.

(e) Suppose that, for some i ∈ {1, . . . ,m}, g∗i or ℓ∗i is uniformly convex at vi. Then vi,n → vi
and p2,i,n → vi.

Proof. Let us first establish a connection between Problem 4.1 and Problem 1.1. To this end, let us
define

A = ∂f, C = ∇h, and (∀i ∈ {1, . . . ,m}) Bi = ∂gi and Di = ∂ℓi. (4.6)

It is clear that (4.3) yields (3.1) and, using (2.7) and (2.8), that (4.5) yields (3.3). Moreover, it follows
from [8, Theorem 20.40] that the operators A and (Bi)1≤i≤m are maximally monotone, and from [8,
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Proposition 17.10] that C is monotone. On the other hand, for every i ∈ {1, . . . ,m}, it follows
from the 1/νi-strong convexity of ℓi and [8, Corollary 13.33 and Theorem 18.15] that ℓ∗i is Fréchet
differentiable on Gi with a νi-Lipschitzian gradient, and from (2.7) that D−1

i = ∇ℓ∗i . Altogether, we
can apply Theorem 3.1 to obtain the existence of a point x ∈ H such that

z ∈ ∂f(x) +
m∑

i=1

L∗
i

(
(∂gi � ∂ℓi)(Lix− ri)

)
+∇h(x), (4.7)

and of an m-tuple (v1, . . . , vm) ∈ G1 ⊕ · · · ⊕ Gm such that

(∃x ∈ H)

{
z −

∑m
j=1

L∗
jvj ∈ ∂f(x) +∇h(x)

(∀i ∈ {1, . . . ,m}) vi ∈ (∂gi �∂ℓi)(Lix− ri),
(4.8)

that satisfy (i) and (ii). It remains to show that x solve (4.1) and (v1, . . . , vm) solves (4.2). We first
observe that since, for every i ∈ {1, . . . ,m}, dom ℓ∗i = Gi [8, Proposition 24.27] yields

(∀i ∈ {1, . . . ,m}) ∂gi� ∂ℓi = ∂(gi � ℓi). (4.9)

On the other hand, it follows from [8, Corollary 16.38(iii) and Proposition 17.26(i)] that

∂
(
f + h− 〈· | z〉

)
= ∂f +∇h− z. (4.10)

As a result, we derive from (4.7) that

0 ∈ ∂
(
f + h− 〈· | z〉

)
(x) +

m∑

i=1

L∗
i

(
∂(gi � ℓi)(Lix− ri)

)
. (4.11)

However, since (4.3) and [8, Proposition 16.5(ii)] imply that

∂
(
f + h− 〈· | z〉

)
+

m∑

i=1

L∗
i

(
∂(gi � ℓi)

)
(Li · −ri) ⊂ ∂

(
f +h−〈· | z〉+

m∑

i=1

(gi � ℓi) ◦ (Li · −ri)

)
, (4.12)

it follows from (4.11) that

0 ∈ ∂

(
f + h− 〈· | z〉+

m∑

i=1

(gi � ℓi) ◦ (Li · −ri)

)
(x). (4.13)

Thus, Fermat’s rule [8, Theorem 16.2] asserts that x solves (4.1). Finally, to show that (v1, . . . , vm)
solves (4.2), we first note that it follows from (4.10), (2.7), and [8, Proposition 15.2] that

(
∂f +∇h

)−1
=
(
∂(f + h)

)−1
= ∂(f + h)∗ = ∂

(
f∗

�h∗
)
. (4.14)

Likewise, (4.9) and [8, Proposition 13.21(i)] yield

(∀i ∈ {1, . . . ,m})
(
∂gi �∂ℓi

)−1
= ∂

(
gi� ℓi

)∗
= ∂

(
g∗i + ℓ∗i

)
. (4.15)

Hence, combining (4.8), (4.14), and (4.15), we obtain

(∃x ∈ H)

{
x ∈ ∂(f∗

�h∗)
(
z −

∑m
j=1

L∗
jvj
)

(∀i ∈ {1, . . . ,m}) Lix− ri ∈ ∂
(
g∗i + ℓ∗i

)
(vi)

(4.16)
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and therefore

(∃x ∈ H)





−(Lix)1≤i≤m ∈ −

(
m

×
i=1

Li

)(
∂(f∗

�h∗)
(
z −

∑m
j=1

L∗
jvj
))

(Lix)1≤i≤m ∈
m

×
i=1

∂
(
g∗i + ℓ∗i + 〈· | ri〉

)
(vi).

(4.17)

Hence, using [8, Propositions 16.5(ii) and 16.8] and the notation (2.1),

(0, . . . , 0) ∈ −

(
m

×
i=1

Li

)(
∂(f∗

�h∗)

(
z −

m∑

j=1

L∗
jvj

))
+

m

×
i=1

∂
(
g∗i + ℓ∗i + 〈· | ri〉

)
(vi)

= −

( m⊕

i=1

L∗
i

)∗(
∂(f∗

�h∗)

(
z −

( m⊕

i=1

L∗
i

)
(v1, . . . , vm)

))

+ ∂

( m⊕

i=1

(
g∗i + ℓ∗i + 〈· | ri〉

))
(v1, . . . , vm)

⊂ ∂

(
(f∗

�h∗)

(
z −

( m⊕

i=1

L∗
i

)
·

)
+

m⊕

i=1

(
g∗i + ℓ∗i + 〈· | ri〉

))
(v1, . . . , vm). (4.18)

In other words, by Fermat’s rule, (v1, . . . , vm) solves (4.2). Finally, the strong convergence claims
in (ii)(d) and (ii)(e) follow from Theorem 3.1(ii)(e)&(ii)(f) since the uniform convexity of a function
ϕ ∈ Γ0(H) at a point of the domain of ∂ϕ implies the uniform monotonicity of ∂ϕ at that point [46,
Section 3.4].

In the following proposition we give conditions under which (4.3) is satisfied.

Proposition 4.3 Suppose that (4.1) has at least one solution and set

S =
{
(Lix− yi)1≤i≤m

∣∣ x ∈ dom f and (∀i ∈ {1, . . . ,m}) yi ∈ dom gi + dom ℓi
}
. (4.19)

Then (4.3) is satisfied if one of the following holds.

(i) (r1, . . . , rm) ∈ sriS.

(ii) For every i ∈ {1, . . . ,m}, gi or ℓi is real-valued.

(iii) H and (Gi)1≤i≤m are finite-dimensional, and there exists x ∈ ri dom f such that

(∀i ∈ {1, . . . ,m}) Lix− ri ∈ ri dom gi + ri dom ℓi. (4.20)

Proof. It follows from (4.19) and [8, Proposition 12.6(ii)] that

S =
{
(Lix− yi)1≤i≤m

∣∣ x ∈ dom f and (∀i ∈ {1, . . . ,m}) yi ∈ dom(gi� ℓi)
}

=

{
(Lix− yi)1≤i≤m

∣∣∣ x ∈ dom(f + h− 〈· | z〉) and (yi)1≤i≤m ∈
m

×
i=1

dom(gi � ℓi)

}

=

( m

×
i=1

Li

)(
dom

(
f + h− 〈· | z〉

))
− dom

m⊕

i=1

(gi � ℓi). (4.21)
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(i): In view of (4.21),

(r1, . . . , rm) ∈ sriS

⇒ (0, . . . , 0) ∈ sri

(( m

×
i=1

Li

)(
dom

(
f + h− 〈· | z〉

))
− dom

m⊕

i=1

(gi� ℓi)(· − ri)

)
. (4.22)

Hence, since (×m
i=1

Li)
∗ =

⊕m
i=1

L∗
i , it follows from (4.9), (4.10), and [8, Theorem 16.37(i)] that

∂f +

m∑

i=1

L∗
i (∂gi �∂ℓi)(Li · −ri) +∇h− z = ∂

(
f + h− 〈· | z〉

)
+

m∑

i=1

L∗
i

(
∂(gi � ℓi)

)
(Li · −ri)

= ∂

(
f + h− 〈· | z〉+

m∑

i=1

(gi� ℓi) ◦ (Li · −ri)

)
. (4.23)

Since (4.1) has at least one solution it follows from Fermat’s rule that 0 is in the range of the
right-hand side of (4.23), which shows that (4.3) holds.

(ii)⇒(i): We have (∀i ∈ {1, . . . ,m}) dom gi + dom ℓi = Gi. Therefore (4.19) yields S =
⊕m

i=1
Gi.

(iii)⇒(i): We have sriS = riS. However, it follows from (4.21) and [8, Corollary 6.15] that

riS = ri

(( m

×
i=1

Li

)(
dom

(
f + h− 〈· | z〉

))
− dom

m⊕

i=1

(gi � ℓi)

)

= ri

( m

×
i=1

Li

)(
dom f

)
− ri dom

m⊕

i=1

(gi � ℓi)

=

( m

×
i=1

Li

)(
ri dom f

)
−

m

×
i=1

ri dom(gi � ℓi)

=

( m

×
i=1

Li

)(
ri dom f

)
−

m

×
i=1

(
ri dom gi + ri dom ℓi

)
. (4.24)

Hence (r1, . . . , rm) ∈ sriS ⇔ (∃x ∈ ri dom f)(∀i ∈ {1, . . . ,m}) Lix− ri ∈ ri dom gi + ri dom ℓi.

Remark 4.4 In Problem 4.1, if each function ℓi is the indicator function of {0}, then (4.1) reduces
to

minimize
x∈H

f(x) +
m∑

i=1

gi(Lix− ri) + h(x)− 〈x | z〉. (4.25)

Even in this special case, the algorithm resulting from (4.5) is new. This observation remains valid
if we further assume that h : x 7→ 0.
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Analysis and Variational Problems, SIAM, Philadelphia, PA, 1999.

[18] F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems,
Springer-Verlag, New York, 2003.

[19] W. Fenchel, Convex Cones, Sets and Functions, Princeton University, Princeton, NJ, 1953.

[20] M. Fukushima, The primal Douglas-Rachford splitting algorithm for a class of monotone mappings with
applications to the traffic equilibrium problem, Math. Programming, vol. 72, pp. 1–15, 1996.

[21] D. Gabay, Applications of the method of multipliers to variational inequalities, in: M. Fortin and R.
Glowinski (eds.), Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary
Value Problems, pp. 299–331. North-Holland, Amsterdam, 1983.

[22] R. Glowinski and P. Le Tallec (eds.), Augmented Lagrangian and Operator-Splitting Methods in Nonlinear
Mechanics, SIAM, Philadelphia, 1989.

20

http://arxiv.org/abs/1106.0144


[23] C. J. Goh and X. Q. Yang, Duality in Optimization and Variational Inequalities, Taylor & Francis,
London, 2002.
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