Finite-time stabilization of 2*2 hyperbolic systems on tree-shaped networks - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Control and Optimization Année : 2014

Finite-time stabilization of 2*2 hyperbolic systems on tree-shaped networks

Résumé

We investigate the finite-time boundary stabilization of a 1-D first order quasilinear hyperbolic system of diagonal form on [0,1]. The dynamics of both boundary controls are governed by a finite-time stable ODE. The solutions of the closed-loop system issuing from small initial data in Lip([0,1]) are shown to exist for all times and to reach the null equilibrium state in finite time. When only one boundary feedback law is available, a finite-time stabilization is shown to occur roughly in a twice longer time. The above feedback strategy is then applied to the Saint-Venant system for the regulation of water flows in a network of canals.
Fichier principal
Vignette du fichier
PR4.pdf (284.85 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00793728 , version 1 (22-02-2013)

Identifiants

Citer

Vincent Perrollaz, Lionel Rosier. Finite-time stabilization of 2*2 hyperbolic systems on tree-shaped networks. SIAM Journal on Control and Optimization, 2014, 52 (1), pp.143-163. ⟨hal-00793728⟩
356 Consultations
251 Téléchargements

Altmetric

Partager

More