Complexity of determining the irregular chromatic index of a graph - Archive ouverte HAL Access content directly
Reports Year : 2013

Complexity of determining the irregular chromatic index of a graph

Abstract

A graph G is locally irregular if adjacent vertices of G have different degrees. A k-edge colouring phi of G is locally irregular if each of the k colours of phi induces a locally irregular subgraph of G. The irregular chromatic index chi_{irr}'(G) of G is the least number of colours used by a locally irregular edge colouring of G (if any). We show that determining whether chi_{irr}'(G)=2 is NP-complete, even when G is assumed to be a planar graph with maximum degree at most 6.
Fichier principal
Vignette du fichier
irreg.pdf (292.63 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00789172 , version 1 (15-03-2013)
hal-00789172 , version 2 (16-05-2013)

Identifiers

  • HAL Id : hal-00789172 , version 2

Cite

Julien Bensmail. Complexity of determining the irregular chromatic index of a graph. 2013. ⟨hal-00789172v2⟩

Collections

CNRS TDS-MACS LARA
105 View
293 Download

Share

Gmail Facebook X LinkedIn More