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Abstract

A graph G is locally irregular if adjacent vertices of G have different
degrees. A k-edge colouring φ of G is locally irregular if each of the k
colours of φ induces a locally irregular subgraph of G. The irregular
chromatic index χ′

irr(G) of G is the least number of colours used by a
locally irregular edge colouring ofG (if any). We show that determining
whether χ′

irr(G) = 2 is NP-complete, even when G is assumed to be a
planar graph with maximum degree at most 6.

1 Introduction

Let G be a graph. Given a subset F ⊆ E(G) of edges of G, the subgraph of
G induced by F is the subgraph of G whose vertices are the vertices of G
which are incident to edges in F and whose edges are those in F . We say
that G is locally irregular if adjacent vertices of G have distinct degrees.

A k-edge colouring φ : E(G)→ {1, ..., k} of G is locally irregular if every
of the k colours of φ induces a locally irregular subgraph of G. The irregular
chromatic index of G, denoted by χ′irr(G), is the least number of colours
needed by a locally irregular edge colouring of G (if any).

The notion of locally irregular edge colouring of graphs was recently in-
troduced by Baudon et al. [3] and combines two popular notions of graph
theory, namely the ones of locally irregular graphs and adjacent vertex dis-
tinguishing edge colourings of graphs. Locally irregular graphs were first
introduced under the name of highly irregular graphs in a work aiming at
defining some possible ways for catching the irregularity of graphs [2].

Adjacent vertex distinguishing edge colourings of graphs have been inten-
sively studied for the last decades (see [8] and [9] for additional informations
on this topic). Numerous different such problems may thus be found in the
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literature differing mainly on what are the adopted conditions for a vertex
to be considered as distinguished from its neighbours (but these conditions
are related to some edge colouring). Let us introduce two examples of such
problems based on a k-edge colouring φ of G taking values in {1, ..., k}. In
what follows, sφ(v) and mφ(v) denote, for some vertex v of G, the sum and
the multiset of the colours incident to v by φ, respectively.

If for every pair of adjacent vertex {u, v} of G we have sφ(u) 6= sφ(v),
then we say that φ is neighbour sum distinguishing. Observe that not all
graphs admit neighbour sum distinguishing edge colourings since isolated
edges do not admit any such colouring. However, graphs without such edges
apart, it is believed that 3 colours are sufficient to make every pair of adja-
cent vertices distinguished in any graph. Karoński,  Luczak and Thomason
thus raised the following elegant conjecture known as the 1-2-3 Conjec-
ture [7].

1-2-3 Conjecture. All graphs without isolated edges admit a neighbour sum
distinguishing 3-edge colouring.

If we rather have mφ(u) 6= mφ(v) for every pair of adjacent vertices
{u, v} in G, then φ is said neighbour multiset distinguishing. Neighbour
multiset distinguishing edge colourings (also called detectable colourings in
the literature) were mainly considered by Addario-Berry et al. in [1]. They
showed that, graphs with isolated edges apart, all graphs admit a neighbour
multiset distinguishing 4-edge colouring and that a large family of graphs
even admit a neighbour multiset distinguishing 3-edge colouring. These
results would seem to indicate that graphs without isolated edges admit a
multiset distinguishing edge colouring using at most 3 colours.

Detection Conjecture. All graphs without isolated edges admit a neigh-
bour multiset distinguishing 3-edge colouring.

Clearly, every neighbour sum distinguishing or locally irregular edge
colouring is also neighbour multiset distinguishing. Locally irregular edge
colourings may thus be considered as a new tool for tackling the Detection
Conjecture. However, there does not seem to be any systematic relationship
between neighbour sum distinguishing and locally irregular edge colourings.

Similarly as for neighbour sum and neighbour multiset distinguishing
edge colourings, there exist graphs that do not admit any locally irregular
edge colouring. Such graphs are said non-colourable (with respect to locally
irregular edge colourings). As shown in [3], non-colourable graphs include
odd length paths and cycles, and a family of tree-like graphs with maximum
degree at most 3 obtained by connecting an arbitrary number of triangles
in a specific way. It is worth mentioning that, because of their simple struc-
ture, non-colourable graphs may be recognized in polynomial time. As for
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colourable graphs, all known candidates have irregular chromatic index at
most 3, and we know graphs with irregular chromatic index exactly k for
every k ∈ {1, 2, 3}. For example, observe that χ′irr(P3) = 1, χ′irr(P2q+1) = 2
for every q ≥ 2, and χ′irr(C2q′) = 3 for every odd q′ ≥ 3, where Pn and Cn
are the path and cycle on n vertices, respectively, for every n ≥ 1.

We still do not know whether there exist graphs with irregular chromatic
index at least 4. Therefore, the following conjecture was raised in [3].

Local Irregularity Conjecture. Colourable graphs have irregular chro-
matic index at most 3.

If the Local Irregularity Conjecture turned out to be true, then all
colourable graphs would have irregular chromatic index 1, 2 or 3. So the
next interesting question would be to find out whether it is easy to deter-
mine the tight irregular chromatic index of a given colourable graph. For
this purpose, we introduce the following decision problem.

Locally Irregular k-Edge Colouring - k-LIEC
Instance: A graph G.
Question: Do we have χ′irr(G) ≤ k?

Clearly, χ′irr(G) = 1 if and only if G is locally irregular itself. Since
checking whether a graph is locally irregular can be done in polynomial
time, 1-LIEC is in P. In this paper, we show that determining the tight
irregular chromatic index of a given graph is difficult in general.

Theorem 1. 2-LIEC is NP-complete, even when restricted to planar graphs
with maximum degree at most 6.

Studies of similar decision problems in the context of neighbour sum
and neighbour multiset distinguishing edge colourings may be found in the
literature. In particular, it was shown that deciding whether a graph admits
a neighbour sum or a neighbour multiset distinguishing 2-edge colouring is
NP-complete in general (see [4] and [6], respectively). Theorem 1 thus meets
these two complexity results.

Section 3 is devoted to the proof of Theorem 1. We first introduce,
in upcoming Section 2, some notation and graph constructions used in the
proof of Theorem 1. Concluding remarks are given in Section 4.

2 Definitions and notation

Let G be an arbitrary graph and φ : E(G) → {0, 1} be a locally irregular
2-edge colouring of G. The subgraph of G induced by colour 1 (resp. 0) of
φ is called the 1-subgraph (resp. 0-subgraph) of G induced by φ. When no
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Figure 1: Two graphs G and H with output (o, o′) and input (i, i′), respec-
tively, and the connection of G and H along (o, o′) and (i, i′)

ambiguity is possible, the mention to G and φ may be omitted. Given a
vertex v of G, we denote by dφ,1(v) (resp. dφ,0(v)) the degree of the vertex
v in the 1- (resp. 0-) subgraph of G.

An input (resp. output) of G is a pair of edges (i, i′) (resp. (o, o′)) such
that i = uv and i′ = vw (resp. o = wv and o′ = vu) and u and v have
degree 1 and 2 in G, respectively. Consider now two graphs G and H such
that (o, o′) and (i, i′) are an output of G and an input of H, respectively.
The connection of G and H along (o, o′) and (i, i′) is the graph obtained by
taking the disjoint union of G and H, and then identifying the edges o and
i, and o′ and i′. The inputs and outputs of the resulting graph are those of
G and H that have not been used for the connection. This construction is
depicted in Figure 1.

Given two outputs (o1, o
′
1) and (o2, o

′
2) of G with o′1 = v1w1 and o′2 =

v2w2, the identification of the two outputs (o1, o
′
1) and (o2, o

′
2) is obtained by

identifying the vertices w1 and w2 in G. The identification of more than two
outputs of G is defined analogously. According to the original definition,
notice that identified outputs of G are not outputs of the resulting graph.

3 Proof of Theorem 1

The reader is referred to [5] for details on computational complexity theory.
Given a graph G and a 2-edge colouring φ of G, one can check in polynomial
time whether the two subgraphs of G induced by φ are locally irregular.
Therefore, 2-LIEC is in NP.

We now show the completeness of 2-LIEC in NP by reduction from the
following NP-complete problem.
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1-in-3 SAT
Instance: A 3CNF formula F with clauses C1, ..., Cm over variables x1, ..., xn.
Question: Is there a 1-in-3 truth assignment of the variables of F , that is a
truth assignment such that each clause of F has exactly one true literal?

Let us make some observations on the structure of F . First, we can
assume that every possible literal appears in F . Indeed, if xi does not
appear in any clause of F , then clearly the 3CNF formula

F ′ = F ∧ (xi ∨ xi ∨ xn+1) ∧ (xn+1 ∨ xn+1 ∨ xn+1),

where xn+1 is a new variable, admits a 1-in-3 truth assignment of its variables
if and only if F admits one too. Since there are 2n literals related to the
variables of F , a formula equivalent to F that contains every possible literal
over its variables can be obtained from F in polynomial time.

Next, it should be clear that a clause (xi ∨ xi ∨ xi) cannot be satisfied
by exactly one of its literals by any truth assignment of the variables of F .
Therefore, we may suppose that F does not contain such a clause. Finally,
observe that if F contains a clause (xi ∨ xi ∨ xj), then, in every 1-in-3 truth
assignment of F , the variables xi and xj have to be set to false and true,
respectively. When dealing with such a clause, we say that xi and xj are
forced to false and true, respectively.

We now explain how to get a graph GF from F such that F is satis-
fiable in a 1-in-3 way if and only if χ′irr(GF ) = 2. Here is a brief sketch
of the construction. The graph GF has to be seen as an electrical circuit
through which two opposite signals, the true and the false ones, are propa-
gated through many components whose inputs and outputs are connected in
a specific way. Besides, the propagation of these signals has the same prop-
erties as the propagation of a locally irregular 2-edge colouring in a graph.
The components of GF are the following. First, the generator gadget GF (S)
of GF spreads the true signal through m clause gadgets GF (C1), ..., GF (Cm),
where each clause Ci in F is associated with the clause gadget GF (Ci) in
GF . The clause gadgets then modulate their input true signal, that is they
can switch their input signal or not, and propagate it to the literal gadgets
GF (`1), ..., GF (`2n) of GF . Similarly as for the clauses of F and the clause
gadgets of GF , there is a direct analogy between the literal `i and the literal
gadget GF (`i). The clause and literal gadgets are linked in the following
way:

• if Ci = (`i1 ∨ `i2 ∨ `i3) is a clause of F , then GF (Ci) is connected
to GF (`i1) along an output of GF (Ci). If `i2 6= `i1 , then GF (Ci) is
connected to GF (`i2) along a second output of GF (Ci). Finally, if
`i3 6= `i1 and `i3 6= `i2 , then GF (Ci) is also connected to GF (`i3) along
a third output.
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• Exactly one arbitrary output of each clause gadget spreads the true
signal, while its other outputs (there are at most two of them) propa-
gate the false one.

Each literal gadget GF (`i) of GF has exactly one output and, according
to the connection with the clause gadgets, exactly ni inputs, where ni is
the number of distinct clauses in F that contain the literal `i for every
i ∈ {1, ..., 2n}. The main property of a literal gadgetGF (`i) is that it outputs
a signal if and only if the same signal comes in from its ni inputs. Moreover,
if a given signal comes in from the ni inputs of GF (`i), then GF (`i) outputs
the same signal. Finally, the outputs of the two literal gadgets GF (xi) and
GF (xi) are linked in such a way that the propagation of the signal is correct
if and only if the two output signals are different.

Hence, we have an analogy between satisfying F in a 1-in-3 way and
spreading the true signal through GF :

• each clause Ci in F must have exactly one true literal and exactly one
output of GF (Ci) must spread the true signal out,

• every literal `i must have the same truth value in all clauses it appears
in and all the inputs of GF (`i) must spread the same signal in,

• a variable xi and its negation xi must have distinct truth values and
the outputs of GF (xi) and GF (xi) must spread different signals out.

We now go into the details of the proof by introducing the generator,
clause and literal gadgets of GF . The graph GF is constructed step by step
as it is augmented by connecting these gadgets. All along this proof, the
function φ : E(GF ) → {0, 1} is a locally irregular 2-edge colouring of GF
propagated along the edges of GF . When augmenting GF with a new gadget,
it should be understood that φ is extended to this new gadget according to
the lemmas we point out. The true (resp. false) signal is depicted as thick
(resp. thin) edges in our schemas and corresponds to colour 1 (resp. 0) of
φ.

The generator gadget GF (S) of GF is obtained by connecting several
copies of the graph G∗ depicted in Figure 2, where (u1u2, u2u3) is the input
of G∗, and (u10u11, u11u12) and (u19u20, u20u21) are the two outputs of G∗.
This gadget G∗ has the following property.

Lemma 1. In a locally irregular 2-edge colouring of G∗, the input and output
edges of G∗ have the same colour.
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Figure 2: The gadget G∗ and a locally irregular 2-edge colouring of G∗

Proof. We initiate the locally irregular 2-edge colouring φ of G∗ with the
input of G∗. Let us suppose, without loss of generality, that φ(u1u2) =
1. Then we have φ(u2u3) = 1 since otherwise we would have dφ,1(u1) =
dφ,1(u2) = 1. We then have φ(u3u4) = φ(u3u13) since, otherwise, we would
have dφ,1(u2) = dφ,1(u3) = 2.

Let us first suppose φ(u3u4) = φ(u3u13) = 1. Clearly, we cannot have
φ(u4u5) = φ(u4u6) since, in this case, when colouring u5u6 we would have
either dφ,1(u5) = dφ,1(u6) or dφ,0(u5) = dφ,0(u6). Suppose then φ(u4u5) = 1
and φ(u4u6) = 0. Now observe that if φ(u5u6) = 1, then we must set
φ(u4u7) = 0 to get dφ,0(u6) 6= dφ,0(u4). But then dφ,1(u4) = dφ,1(u5) = 2.
Similarly, if φ(u5u6) = 0, then we must have φ(u4u7) = 1 since otherwise we
would have dφ,0(u6) = dφ,0(u4) = 2. But we now have dφ,1(u3) = dφ,1(u4) =
3. Hence, we cannot extend φ to G∗ if φ(u3u4) = φ(u3u13) = 1.

Thus, we must have φ(u3u4) = φ(u3u13) = 0. For the same reasons as
before, we have φ(u4u5) = 1 and φ(u4u6) = 0 without loss of generality.
Now, if φ(u5u6) = 0, then we must have φ(u4u7) = 0 too so that dφ,0(u4) 6=
dφ,0(u6). But then we get dφ,1(u4) = dφ,1(u5) = 1. Therefore, we must
set φ(u5u6) = 1. To ensure that u4 and u3 have distinct degrees in the
0-subgraph, we now need φ(u4u7) = 0. Similarly as before, we must have
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φ(u9u8) = φ(u8u7). Clearly, if φ(u9u8) = φ(u8u7) = 0, then we must
have φ(u7u10) = 0 so that dφ,0(u7) 6= dφ,0(u8); but then we get dφ,0(u4) =
dφ,0(u7) = 3. So φ(u9u8) = φ(u8u7) = 1, and φ(u7u10) = 0 since otherwise
we would have dφ,1(u8) = dφ,1(u7) = 2. Because dφ,0(u7) = 2, we must
have φ(u10u11) = 1. Besides, to get dφ,1(u10) 6= dφ,1(u11), we have to set
φ(u11u12) = 1.

The locally irregular 2-edge colouring φ is propagated to the remaining
edges of G∗ in a symmetric way. We finally get that the input and outputs
of G∗ have the same colour via φ, as claimed.

According to Lemma 1, the gadget G∗ propagates its input colour, say
the thick one, of a locally irregular 2-edge colouring towards two directions.
Moreover, observe that by connecting two copies G1 and G2 of G∗ along
one output of G1 and the input of G2, we obtain a propagation of the thick
colour into three directions. By successively repeating this construction, one
can spread the thick colour towards an arbitrary number of directions. Now
consider a path P5 = u1u2u3u4u5 on 5 vertices with input (u1u2, u2u3) and
output (u3u4, u4u5), and denote by G′ the graph obtained by connecting G∗

and P5 along (u10u11, u11u12) and (u1u2, u2u3). Clearly, in every extension
of a locally irregular 2-edge colouring of G∗ to G′, the two new output edges
u3u4 and u4u5 of G′ are coloured with the thin colour. Hence, we may also
spread the thin colour as well.

The generator gadgetGF (S) ofGF is obtained by combining the previous
remarks, that is by connecting several copies of G∗ and P5. From now, we
suppose that φ is the locally irregular 2-edge colouring of GF mentioned
before. This colouring is initiated with GF (S) in such a way that its input
is coloured 1. According to our terminology, GF (S) has a finite number of
outputs which are either positive or negative, depending on whether they are
coloured 1 or 0 via φ, respectively. This number of outputs will be clarified
at the end of this proof.

In what follows, a (k1, k2)-vertex a of GF for some k1, k2 ≥ 1 is the vertex
of degree k1 + k2 resulting from the identification of k1 distinct positive
outputs of GF (S) and k2 distinct negative outputs of GF (S). Remark that
this resulting vertex a has degree k1 (resp. k2) in the 1- (resp. 0-) subgraph of
GF (S). According to our terminology, for such a vertex we have dφ,1(a) = k1
and dφ,0(a) = k2. Besides, it should be understood that a subgraph of GF
containing a (k1, k2)-vertex is implicitly connected to GF (S).

We now introduce the clause gadgets GF (C1), ..., GF (Cm) that are con-
nected to some outputs of GF (S). Depending on the number ci ∈ {2, 3} of
distinct literals in Ci (recall that ci 6= 1), the clause gadget GF (Ci) can be
of two different forms.

• If ci = 2, then GF (Ci) is the graph depicted in Figure 3.a, obtained
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Figure 3: The clause gadget GF (Ci) and locally irregular 2-edge colourings
of GF (Ci)

by connecting a copy of G∗ and P5 in such a way that GF (Ci) has one
positive output and one negative output. It is connected to GF (S)
along one positive output of GF (S) and (v1v2, v2v3), where (v1v2, v2v3)
is the input of GF (Ci).

• If ci = 3, then GF (Ci) is a copy of the graph depicted in Figure 3.b,
where ai,1, ai,2 and ai,3 are (3, 1)-, (1, 3)- and (4, 1)-vertices, respec-
tively, and (v7v8, v8v9), (v15v16, v16v17) and (v23v24, v24v25) are its three
outputs.

When ci = 3, the clause gadget GF (Ci) has the following property.

Lemma 2. Suppose ci = 3. In any extension of φ to GF (Ci), exactly one
output of GF (Ci) is coloured 1 while all of its other outputs are coloured 0.

Proof. Since ai,1 is adjacent to a vertex of GF (S) with degree 2 in the 0-
subgraph, we must set φ(ai,1v1) = 1. For the same reason, we have to
set φ(ai,2v1) = 0 and φ(ai,3v1) = 1. So we get dφ,1(ai,1) = dφ,0(ai,2) =
4 and dφ,1(ai,3) = 5. Observe that if no edge, two edges or three edges
among those in {v1v4, v1v12, v1v18} were coloured 1 via φ and the other
ones were coloured 0, then we would get dφ,0(v1) = dφ,0(ai,2), dφ,1(v1) =
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dφ,1(ai,1) or dφ,1(v1) = dφ,1(ai,3), respectively. Therefore, exactly one edge
in {v1v4, v1v12, v1v18} is coloured 1 via φ, while the other two are coloured 0.

Let us suppose φ(v1v4) = 1 without loss of generality. Observe that
we have dφ,1(v1) = dφ,0(v1) = 3. Once again, the edges v2v3 and v3v4
have to be coloured with the same colour, but this cannot be 1. Indeed,
if φ(v2v3) = φ(v3v4) = 1, then we have dφ,1(v3) = dφ,1(v4) = 2. Thus, we
have to set φ(v4v5) = 1 but then we get dφ,1(v4) = dφ,1(v1) = 3. So we
necessarily have φ(v2v3) = φ(v3v4) = 0, and φ(v4v5) = 1 since otherwise
we would get dφ,0(v3) = dφ,0(v4) = 2. Now, because dφ,1(v4) = 2, we need
φ(v5v6) = φ(v6v7) = 0. Analogously, we have φ(v7v8) = φ(v8v9) = 1.

Repeating the same arguments towards v17 and v25, knowing that φ(v1v12) =
φ(v1v18) = 0, we get φ(v15v16) = φ(v16v17) = 0 and φ(v23v24) = φ(v24v25) =
0. Finally observe that this colouring of GF (Ci) via φ is not unique and
depends on which edge from {v1v4, v1v12, v1v18} is coloured 1. But in ev-
ery extension of φ to GF (Ci), we get that exactly one input of GF (Ci) is
coloured 1.

We finally clarify the literal gadgets. Recall that for i ∈ {1, ..., 2n}, we
denote by ni the number of distinct clauses of F that contains `i. Besides,
we have ni ≥ 1 for every such integer by assumption. The outputs of
the clause gadgets GF (C1), ..., GF (Cm) are now connected with the literal
gadgets GF (`1), ..., GF (`2n) of GF as follows. The literal gadget GF (`i) has
one output and exactly ni inputs connected to ni clause gadgets of GF
according to which clauses of F contain `i. More precisely, if `i is contained
at least once in Cj , then we connect GF (Cj) and GF (`i) along exactly one
output of GF (Cj) and one input of GF (`i). The output of GF (Cj) used for
the connection is chosen arbitrarily, except in the case where cj = 2. Recall
that, in this case, Cj has two distinct literals xi and x′i that are forced to
false and true, respectively. To model this constraint, we force one input of
GF (xi) to be coloured 0 while one input of GF (x′i) is coloured 1. This is
done by using a negative and a positive output of GF (Cj), respectively, for
the connection of GF (Cj) and GF (xi), and GF (Cj) and GF (x′i).

The structure of the literal gadget GF (`i) depends on the value of ni:

• if ni = 1, then GF (`i) is a copy of P7 = u1u2...u6u7 and has input
(u1u2, u2u3) and output (u5u6, u6u7),

• if ni = 2, then GF (`i) is a copy of the graph depicted in Figure 4.a,
whose inputs are (w1w2, w2w5) and (w3w4, w4w5), and whose output
is (w11w12, w12w13),

• if ni ≥ 3, then GF (`i) is a copy of the graph depicted in Figure 4.b,
whose inputs are (i1i

′
1, i
′
1w1), ..., (inii

′
ni
, i′ni

w1) and whose output is
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Figure 4: The literal gadget GF (`i) in the cases where ni ≥ 2 and locally
irregular 2-edge colourings of GF (`i)

(w8w9, w9w10). In this gadget, the vertices bi,1, ..., bi,ki (resp. ci,1, ..., ci,ki),
where ki = bni

2 c+ 1, are (ni, 1)−, (ni+ 1, 1)−, ..., (ni+ bni
2 c, 1)-vertices

(resp. (1, ni)−, (1, ni + 1)−, ..., (1, ni + bni
2 c)-vertices), respectively.

Besides, in this gadget, w2 results from the identification of a positive
output and a negative output of GF (S).

When ni = 2 or ni ≥ 3, the important property of GF (`i) is that φ can
be propagated to GF (`i) if and only if all of its inputs have the same colour.
This is proved in the following two lemmas.

Lemma 3. Suppose ni = 2. The colouring φ is extendible to GF (`i) if and
only if all the inputs of GF (`i) have the same colour. Moreover, in any
extension of φ to GF (`i), the output of GF (`i) is coloured with the input
colour of GF (`i).

Proof. Suppose φ(w1w2) = φ(w2w5) = 1 and φ(w3w4) = φ(w4w5) = 0
without loss of generality. Observe that if φ(w5w8) = 1, then dφ,1(w2) =
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dφ,1(w5) = 2. Similarly, if φ(w5w8) = 0, then dφ,0(w4) = dφ,0(w5) = 2.
Thus φ is only extendible to GF (`i) when φ(w1w2) = φ(w2w5) = φ(w3w4) =
φ(w4w5).

Let us suppose φ(w1w2) = φ(w2w5) = φ(w3w4) = φ(w4w5) = 1 without
loss of generality. Then, we have to set φ(w5w8) = 1 since otherwise we
would have dφ,1(w2) = dφ,1(w5) = dφ,1(w4) = 2. For the same reasons
as before, we necessarily have φ(w6w7) = φ(w7w8). If this colour is 1,
then we need φ(w8w9) = 1 to distinguish w7 and w8 in the 1-subgraph,
but then dφ,1(w5) = dφ,1(w8) = 3. So, φ(w6w7) = φ(w7w8) = 0 and we
need to set φ(w8w9) = 1 since otherwise the 0-subgraph would have two
adjacent vertices with degree 2. Since dφ,1(w8) = 2, the colouring φ is
propagated alternatively along the path w9w10w11w12w13 in such a way that
φ(w9w10) = φ(w10w11) = 0 and φ(w11w12) = φ(w12w13) = 1.

We show that the same property holds for every ni ≥ 3.

Lemma 4. Suppose ni ≥ 3. The colouring φ is extendible to GF (`i) if and
only if all the inputs of GF (`i) have the same colour. Moreover, in any
extension of φ to GF (`i), the output of GF (`i) is coloured with the input
colour of GF (`i).

Proof. For the same reasons as before, the edges bi,1w1, ..., bi,kiw1 (resp.
ci,1w1, ..., ci,kiw1) have to be coloured 1 (resp. 0) in any extension of φ
to GF (`i). Therefore, the vertex w1 is adjacent to vertices with degree
ni+1, ni+2, ..., ni+bni

2 c+1 in both the 1- and the 0-subgraphs. Let us now
suppose that y inputs of GF (`i) are coloured 1 via φ, where dni

2 e ≤ y ≤ ni−1.
Then w1 has degree y + ki (if φ(w1w4) = 0) or y + ki + 1 (otherwise) in the
1-subgraph, but these two values belong to the set {ni+1, ..., ni+ bni

2 c+1}.
Therefore, all the inputs of GF (`i) must have the same colour via φ. Let
us suppose that this colour is 1 without loss of generality. Then, we also
necessarily have φ(w1w2) = 1 since otherwise we would have dφ,1(w1) =
dφ,1(bi,ki) = ni + bni

2 c + 1. Observe that so far, the 0-subgraph is locally
irregular since ki < ni + 1 for every ni ≥ 3.

Since w2 has degree 2 in the 1-subgraph and is already adjacent to a
vertex with degree 2 in the 1-subgraph, we need to set φ(w2w5) = 1. Now
observe that if we set φ(w3w4) = φ(w4w5) = 1, then we need φ(w5w6) = 1
so that w4 and w5 does not have the same degree in the 1-subgraph. But
then we have dφ,1(w5) = dφ,1(w2) = 3. Thus, φ(w3w4) = φ(w4w5) = 0
and φ(w5w6) = 1 since otherwise w4 and w5 would have degree 2 in the 0-
subgraph. Now, w5 has degree 2 in the 1-subgraph and, thus, the colouring
must alternate along w6w7w8w9w10. For similar reasons as before, this is
done in such a way that φ(w8w9) = φ(w9w10) = 1 .
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GF (S)

GF (C1) GF (C2)

GF (x1) GF (x1) GF (x2) GF (x2)

Figure 5: The reduced graph GF obtained from F = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨
x2 ∨ x2) and a locally irregular 2-edge colouring of GF implying that F
is satisfiable in a 1-in-3 way for x1 = 1 and x2 = 0. All the outputs of
GF (S) used to force the propagation of the two colours along GF are not
represented.

Finally, for each variable xi in F , we identify the outputs of the literal
gadgets GF (xi) and GF (xi). Observe that φ is a locally irregular 2-edge
colouring of GF if and only if the output of GF (xi) is coloured with a colour
different from the one used to colour the output of GF (xi). Indeed, if this
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is not the case, then vertices with degree 2 would be adjacent in either the
1- of the 0-subgraph. A schematic example of a graph resulting from this
reduction is represented in Figure 5.

To show that this reduction may be achieved in polynomial time, we now
determine the number of vertices of GF . The number of outputs of GF (S)
may be computed as follows.

• In the worst case, a clause Ci has three distinct literals and, in this
special case, the clause gadget GF (Ci) contains a (3, 1)-, a (1, 3)- and
a (4, 1)-vertex. Thus, we need O(m) distinct outputs of GF (S) to
construct the clause gadgets of GF .

• We have ni ≤ m for every i ∈ {1, ..., 2n}. Thus, in the worst case, the
literal gadget GF (`i) needs 2ki special vertices constructed thanks to
O(m2) dedicated outputs of GF (S). Since there are 2n literals in F ,
we get that O(nm2) outputs of GF (S) may be necessary to construct
the literal gadgets of GF .

Thus, O(nm2) outputs of GF (S) are necessary to ensure that φ is propa-
gated correctly along GF . These are obtained by connecting O(nm2) copies
of G∗, while G∗ has a constant number of vertices. Roughly, omitting that
some outputs of GF (S) are negative, we get that the order of GF (S) is
O(nm2).

Finally, the number of vertices of a clause or literal gadget of GF that
do not belong to the generator gadget is clearly upper bounded by O(m +
n). Therefore, the number of new vertices needed to construct the clause
and literal gadgets of GF , that is vertices that do not belong to GF (S), is
irrelevant compared to O(nm2).

According to the previous arguments, it is clear that this reduction is
achieved in polynomial time regarding the size of F .

4 Discussion

Note that if the Local Irregularity Conjecture were true, then any colourable
graph would have irregular chromatic index at most k for every k ≥ 3, and,
for such a value of k, the problem k-LIEC would thus be equivalent to the
one of determining whether G is colourable. Thanks to the full characteriza-
tion of non-colourable graphs exhibited in [3], non-colourable graphs may be
recognized in polynomial time. Hence, if the Local Irregularity Conjecture
were true, then we would get that k-LIEC is NP-complete when k = 2, and
is in P otherwise.
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It is also worth mentioning that Theorem 1 implies that there should
not exist an FPT algorithm for k-LIEC parameterised by k. Indeed, such
an algorithm, applied to the case k = 2, would lead to a polynomial-time
algorithm for deciding whether the irregular chromatic index of a graph is
2, contradicting Theorem 1 unless P = NP.

Note that the only unavoidable edge crossings in a reduced graph GF
only concern edges between clause and literal gadgets. We can directly get
rid of these crossings by assuming that F is a planar formula. Since 1-in-3
SAT is known to remain NP-complete when restricted to planar formula,
we get that 2-LIEC is NP-hard when restricted to planar graphs.

In GF , the vertices with the largest degrees are those from the literal
gadgets whose associated literals appear in at least 3 clauses. Note that
we could replace such gadgets by several copies of the gadget depicted in
Figure 4.a, so that literal gadgets all have maximum degree 3. Proceed
as follows for a gadget GF (`i). Recall that ni outputs (o1, o

′
1), ..., (oni , o

′
ni

)
of the clause gadgets must propagate the colouring to GF (`i). First take
one copy G1 of the graph of Figure 4.a, and connected (o1, o

′
1) and (o2, o

′
2)

with the inputs of G1, respectively. According to Lemma 3, the colouring is
propagated to the output of G1, say o(G1) and o′(G1), if and only if (o1, o

′
1)

and (o2, o
′
2) have the same colour. Besides, if the colouring is propagated,

then o(G1) and o′(G1) have the same colour as the input edges. Now, take
another copy G2 of the graph of Figure 4.a, and connect its inputs with
the output of G1, and (o3, o

′
3), respectively. Once again, the colouring is

propagated if and only if the two input colours are the same. And so on.

Using the gadget obtained in this way by using ni−1 copies of the gadget
from Figure 4.a is thus equivalent as using the gadget from Figure 4.b. If
any two of the outputs (o1, o

′
1), ..., (oni , o

′
ni

) have distinct colours, then the
colouring cannot be propagated. Therefore, the literal gadgets of GF can
all have maximum degree 3. Under this assumption, the maximum degree
of any reduced graph GF is at most 6, which is the maximum degree of
a clause gadget whose associated clause of F have three distinct literals.
We thus get that 2-LIEC remains NP-hard when restricted to graphs with
maximum degree at most 6.

Observe that, in the proof of Theorem 1, the resulting graph GF is not
bipartite mainly because of the induced triangles of the gadget G∗. The
existence of a bipartite gadget with the same properties as G∗ would be a
first step towards a proof that the problem 2-LIEC remains NP-complete
when restricted to bipartite graphs. But we did not manage to find such a
gadget so far. So we ask the following.

Question. Is 2-LIEC NP-complete when restricted to bipartite graphs?
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