A Multiple-Instance Learning Framework for Diabetic Retinopathy Screening - Archive ouverte HAL Access content directly
Journal Articles Medical Image Analysis Year : 2012

A Multiple-Instance Learning Framework for Diabetic Retinopathy Screening

Abstract

A novel multiple-instance learning framework, for automated image classification, is presented in this paper. Given reference images marked by clinicians as relevant or irrelevant, the image classifier is trained to detect patterns, of arbitrary size, that only appear in relevant images. After training, similar patterns are sought in new images in order to classify them as either relevant or irrelevant images. Therefore, no manual segmentations are required. As a consequence, large image datasets are available for training. The proposed framework was applied to diabetic retinopathy screening in 2-D retinal image datasets: Messidor (1,200 images) and e-ophtha, a dataset of 25,702 examination records from the Ophdiat screening network (107,799 images). In this application, an image (or an examination record) is relevant if the patient should be referred to an ophthalmologist. Trained on one half of Messidor, the classifier achieved high performance on the other half of Messidor (Az=0.881) and on e-ophtha (Az=0.761). We observed, in a subset of 273 manually segmented images from e-ophtha, that all eight types of diabetic retinopathy lesions are detected.
Fichier principal
Vignette du fichier
Quellec2012.pdf (657.89 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-00786539 , version 1 (16-05-2022)

Licence

Attribution - NonCommercial

Identifiers

Cite

Gwénolé Quellec, Mathieu Lamard, Michael D Abràmoff, Etienne Decencière, Bruno Lay, et al.. A Multiple-Instance Learning Framework for Diabetic Retinopathy Screening. Medical Image Analysis, 2012, 16 (6), pp.1228-1240. ⟨10.1016/j.media.2012.06.003⟩. ⟨hal-00786539⟩
4679 View
67 Download

Altmetric

Share

Gmail Facebook X LinkedIn More