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1. Introduction

The continually increasing amount of images stored in medical
databases makes data-driven knowledge acquisition (i.e. machine
learning) more and more attractive. Unfortunately, many image-
based machine learning techniques require intensive interactions
with clinicians for supervision and evaluation purposes (typically,
through manual segmentation of regions of interest): this is a seri-
ous bottleneck. Therefore, extraction of a limited subset of the
available data, for clinician interpretation and algorithm supervi-
sion, is common practice (this subset is referred to as the reference
dataset). A different approach is explored in this paper: we think
that similar or better detection performance can be achieved
through limited clinician interpretation, so long as a larger refer-
ence dataset is available. In this paper, an extreme scenario is con-
sidered: clinician interpretation is limited to a Boolean label per
image. Given a target concept (e.g. presence of a pathology), clini-
cians are simply asked to indicate whether or not each image in the
bis (I3S), CHU Morvan, 5, Av.
29; fax: +33 2 98 01 81 24.
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reference dataset contains at least one image pattern indicating
that the pathology is present. Obviously, if the burden of clinician
interpretation is significantly reduced, clinicians would be willing
to interpret more images. Moreover, assigning Boolean interpreta-
tions to medical images is often part of the clinical protocol, so
after deidentification, images may be used directly for research
without additional work for clinicians.

One medical application where many images are available is Dia-
betic Retinopathy (DR) screening. DR is the leading cause of blind-
ness in the working population of the European Union and the
United States (Klonoff and Schwartz, 2000). Because early detection
and timely treatment of DR can prevent visual loss and blindness in
patients with diabetes, several DR screening programs have been
initiated in recent years (Abràmoff and Suttorp-Schulten, 2005;
Philip et al., 2007; Massin et al., 2008; Li et al., 2011). As a conse-
quence, large datasets of digitized eye fundus photographs have
been collected. One of these datasets, Messidor1 (1200 images), is
freely available. However, Messidor images have not been manually
segmented, so they cannot be used to supervise most state-of-the-art
DR detection methods (Walter et al., 2007; Philip et al., 2007; Chaum
1 http://messidor.crihan.fr/index-en.php.



Table 1
Glossary.

Reference image Image that has been categorized by
clinicians and that is now used to
categorize new images by analogy
reasoning

Irrelevant image Reference image categorized as irrelevant
Relevant image Reference image categorized as relevant
Reference dataset Dataset of reference images
Image patch/patch Rectangular subset of pixels in an image
Image feature Individual measurable property of a

phenomenon being observed in an image
patch

Signature D-dimensional vector of image features
Reference signature Signature of a patch in a reference image
Irrelevant signature Signature of a patch in an irrelevant image
Possibly-relevant signature Signature of a patch in a relevant image
Local relevance score Real number indicating the risk that a

patch is relevant
Global relevance score Real number indicating the risk that an

image is relevant
et al., 2008; Niemeijer et al., 2009; Sánchez et al., 2010; Giancardo
et al., 2011; Antal et al., 2011; Quellec et al., 2011b; Oliveira et al.,
2011); the readers are referred to Niemeijer et al. (2010) for an over-
view of the DR detection methods involved in the ROC international
challenge.2 Only smaller image datasets come with manual lesion
segmentations: Kauppi et al.’s (2007) DIARETDB1 (89 images),
Niemeijer et al.’s (2010) ROC (100 images), Giancardo et al.’s (2012)
HEI-MED (169 images). Manual-segmentation-free training algo-
rithms are therefore needed to make the most of larger datasets such
as Messidor. The proposed framework is also applied to e-ophtha, an
even larger dataset (25,702 examination records, 107,799 images)
collected in the Ophdiat screening network (Massin et al., 2008).

In this paper, a general framework for automatically finding rel-
evant patterns in images is presented. Its purpose is to automati-
cally define (1) a local relevance score for patches of varying sizes
in reference images (see Table 1) and, at the end of the training
phase, (2) a local relevance score for patches in new images not in-
cluded in the training set. Once a local relevance score is defined
for each patch, a global relevance score is defined for the entire im-
age, using a novel multi-resolution fusion strategy.

The proposed framework fits into the Multiple-Instance Learn-
ing (MIL) paradigm. Multiple-instance learning is a type of super-
vised learning which deals with uncertainty of instance labels
(Maron and Lozano-Pérez, 1998). Standard supervised learners re-
ceive a set of instances which are labeled relevant or irrelevant.
Multiple-instance learners, on the other hand, receive a set of bags
of instances that are labeled relevant or irrelevant. Each bag may
contain many instances. A bag is labeled irrelevant if all the in-
stances in it are irrelevant. On the other hand, a bag is labeled rel-
evant if there is at least one instance in it which is relevant.
Uncertainty lies in the fact that the learner does not know which
instances in the relevant bags are relevant. From a collection of la-
beled bags, the multiple-instance learner tries to induce a concept
that will label individual instances correctly. If each image is re-
garded as a bag and each patch in an image is regarded as an in-
stance, then our problem can be formulated as an MIL problem.
An overview of Multiple-Instance Learning, in the context of image
analysis, is given in Section 3. In this paper, we propose to solve
this MIL problem using content-based image retrieval, a paradigm
presented in the following section.

2. An introduction to content-based image retrieval

Content-Based Image Retrieval (CBIR) is the application of com-
puter vision techniques to the problem of searching for digital
2 http://roc.healthcare.uiowa.edu/.
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images in large databases (Smeulders et al., 2000; Datta et al., 2008).
In CBIR, each image is represented by a signature, i.e. a vector of vi-
sual features (e.g. color, texture, shape features). Comparing two
images amounts to comparing their signatures using a distance met-
ric, or conversely a similarity metric, between signatures. Based on
these metrics, the nearest neighbors of an input image are retrieved
using efficient search algorithms. CBIR is popular in medical applica-
tions (Müller et al., 2004). In particular, it has been applied to the
automatic diagnosis of retinal pathologies in eye fundus images
(Chaum et al., 2008; Quellec et al., 2011a).

The central challenge CBIR systems have to face is bridging the
semantic gap between low-level visual features and the high-level
concept of semantic similarity (Smeulders et al., 2000; Datta et al.,
2008). Several solutions have been proposed to bridge this gap.
One solution is relevance feedback (Ramaswamy et al., 2009;
Azimi-Sadjadi et al., 2009): (1) users are asked to assess the rele-
vance of the retrieved images, (2) the similarity metric is modified
accordingly, (3) new images are retrieved and (4) this process is
iterated until convergence. A second solution is multiple-example
query (Donald and Smeaton, 2005; Zhang and Le, 2009): users are
asked to provide several images representing a target concept and
the system tries to generalize. A third solution is off-line training:
the similarity metric is trained in a dataset of images previously
annotated by experts (Quellec et al., 2010a,).

In some CBIR systems, a bag of signatures is extracted from each
image: each signature in this bag is associated with a patch in the
input image. Similarity metrics and search algorithms are modified
accordingly (Rubner et al., 2000; Ko and Byun, 2002; Sivic and
Zisserman, 2003). In such systems, MIL is one solution to bridge
the semantic gap (Rahmani et al., 2008). Note that the opposite
is done in this paper: CBIR is used to solve an MIL problem. The
final goal is not to retrieve similar images but to categorize each in-
put image as relevant or irrelevant.
3. Medical image analysis based on Multiple-Instance Learning
(MIL)

3.1. A state of the art of medical image analysis based on MIL

To solve general MIL problems, Maron and Lozano-Pérez (1998)
proposed Diverse Density. Diverse Density measures the intersection
of the relevant bags minus the union of the irrelevant bags. By
maximizing Diverse Density, the optimal set of image feature
weights, for a given concept, is found. This approach was applied
to image retrieval (Maron and Ratan, 1998): image features
are extracted from fixed-size patches (square-shaped patches,
square-shaped patches with their 4-connexity neighbors, etc.).
An alternative MIL formulation was proposed by Andrews et al.
(2003): a Support-Vector Machine (SVM) processes the signature
labels as unobserved integer variables, subjected to constraints de-
fined by the bag labels. The goal is to maximize the soft-margin
over hidden label variables and a discriminant function. DD-SVM,
an image categorization system proposed by Chen et al., extends
the Diverse Density framework and Andrew’s SVM framework in
the case of segmented regions of arbitrary shape instead of
square-shaped patches (Chen et al., 2004). ACCIO!, another MIL-
based image retrieval system, was recently proposed by Rahmani
et al. (2008). In ACCIO!, signatures are also extracted within seg-
mented regions or in the neighborhood of salient points.
3.2. Limitations of existing MIL methods for medical applications

One major limitation of ACCIO! and DD-SVM is the assumption
that relevant image patches either contain salient points or can be
automatically segmented. This is not necessarily true in medical



applications, where relevant patterns (e.g. lesions) sometimes have
fuzzy edges and their contrast with the background is sometimes
low. In the proposed framework, unlike ACCIO! and DD-SVM, rel-
evant patterns can be characterized even if they cannot be seg-
mented. Robustness is increased by removing the segmentation
step. Also, because this framework does not rely on any segmenta-
tion algorithm, increasing image dimension or changing image
modality is trivial. This in an important feature in medical images
where acquisition devices are regularly updated. Diverse Density
and Andrew’s SVM framework also have one major limitation:
fixed size patches are described, whereas images may contain rel-
evant patterns of varying size. To overcome these limitations, a
multi-resolution and segmentation-free approach is adopted in
this paper.
3.3. Proposed improvements

In the Diverse Density and ACCIO! formulations, learning the tar-
get concept(s) involves image feature weighting (Maron and Ratan,
1998; Rahmani et al., 2008). Let a reference signature denote a sig-
nature extracted from a reference image (see Table 1). In Andrews’
DSM formulation, learning the target concept(s) involves training
an SVM (Andrews et al., 2003); said differently, it involves assign-
ing a weight to each reference signature, namely the optimal
Lagrange multiplier (Schölkopf and Smola, 2002). A unifying ap-
proach is presented in this paper: both image features and refer-
ence signatures are weighted. We will show that combining
image feature weighting and reference signature weighting signif-
icantly improves performance. Moreover, signatures are extracted
in patches of varying size. Classifiers can be trained independently
for each patch size, which defines single-resolution relevance scores
(resolution refers to the distance between two neighboring patches,
and is therefore related to patch size). A classifier can also be trained
across several resolutions simultaneously: a multi-resolution exten-
sion is proposed for both image feature weighting and reference
signature weighting.
4. Outline of the proposed framework

The proposed framework is summarized in Fig. 1 and the main
terms are defined in Table 1.

The first step is to build up a reference dataset. Each image in
this dataset must be categorized, as relevant or irrelevant, by
clinicians.

The second step is to train the automatic categorization system.
Each reference image is divided into possibly-overlapping rectan-
gular image patches (see Section 5). A signature, i.e. a vector of im-
age features, is extracted from each patch. Then, a local relevance
score is computed for each patch (see Section 6). The local rele-
vance score of a patch is based on comparisons between the signa-
ture of this patch and the signature of all other patches in the
reference dataset (the reference signatures for short); this is where
CBIR comes into play. The local relevance score is expected to be
high if the patch includes relevant patterns and low otherwise.
Local relevance scores are defined by two sets of weights: (1)
weights assigned to image features and (2) weights assigned to ref-
erence signatures. These weights are tuned in order to ensure that
patches extracted from irrelevant images are assigned a low rele-
vance score (see Section 7). A 2-step process is used to optimize
the weights:

1. the image feature weights are optimized while keeping the ref-
erence signature weights constant,

2. the reference signature weights are optimized while keeping
the image feature weights constant.
3

The third step is to categorize new images. Each new image is
divided into possibly-overlapping rectangular image patches. A
signature is extracted from each patch. Then, a local relevance
score is computed for each patch using the optimal weights. Final-
ly, a global relevance score is computed for the new image: this
global relevance score combines all local relevance scores (see Sec-
tion 8).

In the following sections, the framework is presented in the
case of fixed-size image patches and two-dimensional images. A
multiscale extension is presented in Appendix A and a generaliza-
tion to higher-dimensional images is presented in Appendix B.

5. Image patches

Let I be an image of size M � N. Let j 2 N1 be a scale factor,
where N1 denotes the set of non-zero natural numbers.

The size of a patch in I is given by M
j � N

j . Its top-left corner is at
location ðx; yÞ:

x ¼ M
j uþ du

K

� �
; u ¼ 0 . . . j� 1; du ¼ 0 . . . K � 1

y ¼ N
j v þ dv

K

� �
; v ¼ 0 . . . j� 1; dv ¼ 0 . . . K � 1

(
ð1Þ

where K 2 N1 controls the number of patches (see Fig. 2). If K ¼ 1,
patches at a given scale form a partition of I. If K > 1, these patches
overlap. Let Ij;x;y denote the patch of I at scale j and location ðx; yÞ.

The scale factor has to be adapted to the typical size of the pat-
terns indicating the presence of the target pathology(-ies). If the
patches are too large, then the relevant patterns they contain will
have little impact on the extracted image features. On the contrary,
if the patches only contain small portions of the relevant patterns,
there may be enough data to reliably compute some features (tex-
ture features or color features) but not all features (global shape
parameters, for instance). Therefore, the scale factor has to be
trained and the optimal scale factor probably depends on the
image features that are used. If the presence of the pathology is
indicated by several types of patterns, with different typical sizes,
then several scale factors should be used simultaneously (see
appendix A).

6. A definition for the local relevance score

Let I be an image and let Ij;x;y be a patch of I. Let sðIj;x;yÞ ¼
fs1ðIj;x;yÞ; s2ðIj;x;yÞ; . . . ; sDðIj;x;yÞg, (or s ¼ fs1; s2; . . . ; sDg for short) be
the signature of Ij;x;y.

In order to define a local relevance score for Ij;x;y, we search for a
neighborhood of signature s, noted N sð Þ, among the reference sig-
natures. Precisely, N sð Þ contains the k 2 N1 nearest neighbors of s,
with respect to a Minkowski metric :k km (m 2 N1) and with the
restriction that no more than kmax 2 N1 neighbors are selected
per reference image. Minkowski metrics include the Manhattan
distance (m ¼ 1), the Euclidean distance (m ¼ 2) and the Max dis-
tance (m ¼ 1). The three neighborhood parameters (m; k and kmax)
need to be trained (see Section 9.5).
N sð Þ is divided into N� sð Þ and Nþ sð Þ, respectively the set of

irrelevant and possibly-relevant signatures in the neighborhood
of s (see Table 1).

Let /m be a similarity metric derived from :k km
m, the Minkowski

metric of order m, raised to the power of m:

/mðs; tÞ , s� tmaxðsÞk km
m � s� tk km

m ð2Þ

where t is a signature and tmaxðsÞ is the most distant signature in the
neighborhood of s:

tmaxðsÞ , argmax
t2N sð Þ

s� tk km ð3Þ
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Fig. 2. Image patch geometry. Let I be an image of size M � N. Fig. (a) and (b) show the location of the patches of I at scale j ¼ 2 and j ¼ 4, respectively, for K ¼ 2.

Fig. 1. Outline of the proposed framework.

3 http://www.cs.umd.edu/�mount/ANN/.
The relevance probability of s, noted p sð Þ, derives from /m as
follows:

/þmðsÞ ,
P

t2Nþ sð Þ/mðs; tÞ
/�mðsÞ ,

P
t2N� sð Þ/mðs; tÞ

/mðsÞ , /þmðsÞ þ /�mðsÞ
p sð Þ , /mþðsÞ

/mðsÞ

8>>>>><>>>>>:
ð4Þ

By analogy reasoning, p sð Þ increases with the fraction of possibly-
relevant signatures in the neighborhood of s, and also with the
similarity of these signatures to s. Finally, the relevance score for
Ij;x;y is defined as follows:

r Ij;x;y
� �

, p sð Þ � p0 ð5Þ

where p0 is the chance relevance probability: p0 is the threshold on
p :ð Þ between relevant and irrelevant signatures. Initially, p0 is the
fraction of relevant images in the reference dataset. An adaptive
variation on r Ij;x;y

� �
is presented in Section 7 for training purposes.

The reasons why we chose this definition are enumerated below.
Firstly, we focused on a neighborhood of s (rather than the entire
4

set of reference signatures) for complexity reasons. In particular,
fast algorithms for finding the k nearest neighbors of a signature,
according to Minkowski metrics, are available, which allows large
reference datasets to be used. The Approximate Nearest Neighbors
(ANN) library3 was used in this study. Secondly, the number of
neighbors per reference image was limited to kmax 2 N1 in order to
avoid a selection bias. Suppose some signature t belongs to the
neighborhood of s. Then, without the above-mentioned limitation,
the neighborhood of s would likely contain other signatures from
the same image as t: signatures extracted from patches in the same
region of the eye, depicting the same tissue and photographed with
similar lighting conditions. Thirdly, /m similarity metrics were cho-
sen because they can be decomposed into a sum of feature-specific
similarities /m;d, where d denotes the feature index:

/m;dðs; tÞ ¼ ðsd � tmax
d ðsÞÞ

m � ðsd � tdÞm ð6Þ

This property will prove convenient for training purposes (see Sec-
tion 7.2).



4 CGAL/QP_solver—http://www.cgal.org.
7. Localized weight updating

Let I� denote the set of all irrelevant images in the reference
dataset I . Let I 2 I� be an irrelevant image. Let Ij;x;y be a patch of
I and let s be its signature.

Because I is irrelevant, we know that all its patches are irrele-
vant. In particular, Ij;x;y is irrelevant. As a consequence, the rele-
vance score for Ij;x;y should be non-positive: rðIj;x;yÞ 6 0 (i.e.
p sð Þ 6 p0). Two sets of weights are introduced in the relevance
score definition: (1) weights assigned to image features and (2)
weights assigned to reference signatures (see Section 4). These
weights are tuned to make sure rðIj;x;yÞ 6 0 whenever Ij;x;y is known
to be irrelevant. Note that relevant images contain a mixture of
irrelevant and relevant patches, and we do not know which ones
are relevant, so these images cannot be used to supervise weight
adaptation.

A weight md 2 R is associated with each feature d and a weight
kðtÞ 2 R is associated with each reference signature t. Weight ini-
tialization is presented in Section 7.1. A weight updating procedure
is presented both for image feature weights (see Section 7.2) and
and for reference signature weights (see Section 7.3).

To allow weight updating, Eq. (4) becomes:

/þmðsÞ ,
X

t2Nþ sð Þ

kðtÞ
XD

d¼1

md/m;dðs; tÞ

/�mðsÞ ,
X

t2N� sð Þ
kðtÞ

XD

d¼1

md/m;dðs; tÞ

/mðsÞ , /þmðsÞ þ /�mðsÞ
p sð Þ , /þmðsÞ

/mðsÞ

8>>>>>>>>>>><>>>>>>>>>>>:
ð7Þ

Note that Minkowski metrics can still be used to find the most sim-
ilar reference signatures, but they must be applied to signatures

sd=md
jd ¼ 1 . . . D

n o
and td=md

jd ¼ 1 . . . D
n o

, instead of s and t.

7.1. Weight initialization

Let rd denote the standard deviation of feature d, at scale j, com-
puted over all the patches in all the reference images. Image fea-
ture weight md is initialized to 1=rd. Reference signature weight
kðtÞ is initialized to 1.

7.2. Image feature weight updating

In a first scenario, image feature weights md; d ¼ 1 . . . D, are up-
dated while reference signature weights kðtÞ remain constant.
Given that reference signature weights are constant, and therefore
do not depend on d, Eq. (7) above can be simplified as follows:

/þm;dðsÞ ,
X

t2Nþ sð Þ

kðtÞ/m;dðs; tÞ

/m;dðsÞ ,
X

t2Nþ sð Þ[N� sð Þ

kðtÞ/m;dðs; tÞ

p sð Þ ,
PD

d¼1
md/þ

m;d
ðsÞPD

d¼1
md/m;dðsÞ

8>>>>>>>><>>>>>>>>:
ð8Þ

Let us remind the reader that weight updating is performed on
irrelevant images only: s is a signature describing a patch of I 2 I�.
If pðsÞ > p0, then md is updated. Note that md is global: it is not tuned
to the neighborhood of s specifically, otherwise the system would
not be able to generalize this update to new images. As a conse-
quence, local optimal solutions (obtained as described in Section
7.2.1) are combined into a global solution as described in Section
7.2.2.
5

7.2.1. Locally optimal image feature weight updates
If pðsÞ > p0, we multiply md by a real coefficient xd 2 R in such a

way that pðsÞ ¼ p0 after multiplication. The locally optimal set of xd

coefficients is solution to the following equation (see Eq. (8)):

pðsÞ � p0 ¼
PD

d¼1md/
þ
m;dðsÞPD

d¼1md/m;dðsÞ
�
PD

d¼1xdmd/
þ
m;dðsÞPD

d¼1xdmd/m;dðsÞ
ð9Þ

If we define SðsÞ ,
PD

d¼1md/m;dðsÞ and SþðsÞ ,
PD

d¼1md/
þ
m;dðsÞ, then

Eq. (9) simplifies to:

XD

d¼1

xdmd pðsÞ � p0ð Þ/m;dðsÞ þ /þm;dðsÞ
� �

SðsÞ
h

�/m;dðsÞS
þðsÞ

i
¼ 0 ð10Þ
7.2.2. Global updating of image feature weights
This process is replicated for each irrelevant signature sðeÞ such

that p sðeÞ
� �

> p0; e ¼ 1 . . . E. As a consequence, a system of equa-
tions has to be solved. This system has D unknowns, x1 . . . xD, and
E equations. It can be written as follows:

Ax ¼ b
Ae;d , md pðsðeÞÞ � p0

� �
/m;dðsðeÞÞ þ /þm;dðsðeÞÞ

� �
SðsðeÞÞ

h
�/m;dðsðeÞÞSþðsðeÞÞ

i
be , 0

8>>>>><>>>>>:
ð11Þ

with e ¼ 1 . . . E and d ¼ 1 . . . D. Since E is generally larger than D, we
propose to solve this system in the least mean squared sense, after
weighting each equation e by pðsðeÞÞ � p0

� �
. For equation weighting,

A is replaced by ~A in system (11):

~Ae;d ¼ pðsðeÞÞ � p0

� �
md pðsðeÞÞ � p0

� �
/m;dðsðeÞÞ þ /þm;dðsðeÞÞ

� �
SðsðeÞÞ

h
�/m;dðsðeÞÞS

þðsðeÞÞ
i

ð12Þ

Let F be the function to minimize:

F xð Þ , ~Ax� b
� �T

~Ax� b
� �

¼ xT ~AT ~Ax ð13Þ

To ensure that image feature weights are non-negative, xd must
be non-negative, d ¼ 1 . . . D. Moreover, for Eq. (9) to be valid, solu-
tion x ¼ 0 must be avoided. So, we enforce the sum of all image
feature weights to be positive: without limitations, the sum is set
to 1. System (11), together with the above-mentioned constraints,
can be rewritten as a quadratic program:

min 1
2 xT Qxþ lT x

Q ¼ 2~AT ~A
l ¼ 0
s:t: x P 0; xTm ¼ 1

8>>>><>>>>: ð14Þ

Q is written as a MT M product, M 2 ME;D Rð Þ. As a consequence,
Q is a positive-semidefinite matrix. If Q is also invertible, then sys-
tem (14) has a unique solution, which can be found in polynomial
time with the ellipsoid method.4

7.3. Reference signature weight updating

In the previous section, we have seen how to tune image feature
weights md while keeping reference signature weights kðtÞ con-
stant. The complementary scenario is presented in this second sce-
nario. Let I 2 I� be an irrelevant image. Let Ij;x;y be a patch of I and
let s be its signature.

If pðsÞ > p0, then for each possibly-relevant signature t in the
neighborhood of s; kðtÞ is updated. Like md; kðtÞ is global: local opti-



mal solutions (obtained as described in Section 7.3.1) are com-
bined into a global solution as described in Section 7.3.2.

7.3.1. Locally optimal reference signature weight updates
If pðsÞ > p0, then we multiply the weight of each possibly-

relevant signature t in the neighborhood of s by a coefficient
xðsÞ 2 R in such a way that pðsÞ ¼ p0 after multiplication. Because
image feature weights are constant, this is equivalent to multiply-
ing /þmðsÞ by xðsÞ, where /þmðsÞ is defined in Eq. (7). The locally
optimal xðsÞ coefficient is solution to the following equation (see
Eq. (7)):

pðsÞ � p0 ¼
/þmðsÞ
/mðsÞ

� /þmðsÞxðsÞ
/þmðsÞxðsÞ þ /�mðsÞ

ð15Þ

or, equivalently, to the following equation:

xðsÞ ¼ /þmðsÞ/
�
mðsÞ � ðpðsÞ � p0Þ/�mðsÞ/mðsÞ

/þmðsÞ/
�
mðsÞ þ ðpðsÞ � p0Þ/þmðsÞ/mðsÞ

ð16Þ
7.3.2. Global updating of reference signature weights
A possibly-relevant signature t likely appears in the neighbor-

hood of several reference signatures (see Section 6). Let sðeÞ denote
the irrelevant signatures such that pðsðeÞÞ > p0 and such that t ap-
pears in the neighborhood of sðeÞ; e ¼ 1 . . . E. kðtÞ, the weight of sig-
nature t, is multiplied by a coefficient yðtÞ 2 R chosen in order to
try and satisfy Eq. (16) for each signature sðeÞ. The following system
should therefore be solved:

ayðtÞ ¼ b
ae , 1
be , xðsðeÞÞ

8><>: ð17Þ

where e ¼ 1 . . . E. This system has one unknown, yðtÞ, and E equa-
tions. Like in image feature weighting, system (17) is solved in
the least mean squared sense, subject to yðtÞP 0, after weighting
each equation e by pðsðeÞÞ � p0

� �
. For equation weighting, a and b

are replaced by ~a and ~b, respectively:

~ae , pðsðeÞÞ � p0

� �
~be , pðsðeÞÞ � p0

� �
xðsðeÞÞ

(
ð18Þ

Let G be the function to minimize:

G yðtÞð Þ , ~ayðtÞ � ~b
� �T

~ayðtÞ � ~b
� �

¼ ~aT ~ayðtÞ2 � 2~aT ~byðtÞ þ ~bT ~b ð19Þ

If constraint yðtÞP 0 is relaxed, then G yðtÞð Þ is minimized
when:

G0 yðtÞð Þ ¼ 2~aT ~ayðtÞ � 2~aT b ¼ 0 ð20Þ

or, equivalently, when:

yðtÞ ¼
~aT ~b
~aT ~a
¼
PE

e¼1 pðsðeÞÞ � p0

� �2
xðsðeÞÞPE

e¼1 pðsðeÞÞ � p0ð Þ2
,
dyðtÞ ð21Þ

If dyðtÞ < 0, then constraint yðtÞP 0 is infringed when yðtÞ ¼dyðtÞ. In that case, it can be easily checked that GjyðtÞP0 is strictly

increasing (G0 yðtÞð Þ > 0;8yðtÞP 0). Therefore, if dyðtÞ < 0, the opti-

mal solution is yðtÞ ¼ 0. If dyðtÞ P 0, then the optimal solution is

yðtÞ ¼ dyðtÞ. Unlike image feature weighting, no quadratic program-
ming solver is required for reference signature weighting.

At the end of this procedure, the weight of several possibly-
relevant signatures has changed. As a consequence, p0, the chance
relevance probability, should be updated:
6

p0 ¼
P

I2Iþ ;x;ykðsðIj;x;yÞÞP
I2I ;x;ykðsðIj;x;yÞÞ

ð22Þ

where Iþ denotes the set of all relevant images in I .

8. A definition for the global relevance score

Let I be an image. The global relevance score for I, noted rðIÞ, is
defined as follows (m 2 N):

rðIÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
x;y

rðIj;x;yÞ
�� ��mm

s
ð23Þ

rðIÞ is the m-norm of the vector consisting of the local relevance
scores computed for patches in I. rðIÞ is expected to be large if I is
relevant and small otherwise.

9. Application to diabetic retinopathy screening

The proposed framework was applied to Diabetic Retinopathy
(DR) screening. 25,702 DR screening records were used to test
the performance of global relevance assessment (see Section 9.1).
273 manually segmented images (see Section 9.2) were used to
test the performance of local relevance assessment. The system
was trained in an independent dataset of 1200 DR screening
images (Messidor—see Section 9.3).

9.1. e-ophtha—examination record dataset

e-ophtha contains all examination records collected in the Oph-
diat screening network5 during two consecutive years (2008 and
2009). Ophdiat consists of 29 DR screening centers in the Parisian
area. 25,702 examination records were collected by trained technical
staff and submitted to a remote server. Then, each examination record
was analyzed by one ophthalmologist, out of 11 participating oph-
thalmologists, in Lariboisière Hospital (Paris, France). Each record
contains four eye fundus photographs on average (two per eye) as
well as demographic and biological data. Images were obtained with
non-mydriatic retinographs: either CR-DGi (Canon, Tokyo) or TRC-
NW6S (Topcon, Tokyo) retinographs. Depending on the settings of
each retinograph, images with varying sizes were obtained: image
sizes ranged from 1440� 960 to 2544� 1696 pixels. For the purpose
of this study, images were automatically resized and cropped, by
bilinear interpolation, to a definition of 780� 780 pixels (see
Fig. 3a). Resizing images may affect classification performance. How-
ever, it has one major advantage: a single classifier needs to be
trained, as opposed to one classifier per image size, which means that
a larger training set can be used and that the same classifier can be
used in several datasets. Overall, 107,799 images were collected.

Each examination record was marked (by one ophthalmologist)
as relevant or irrelevant. Examination records were regarded as
relevant if the patient should be referred to an ophthalmologist
for further examinations, treatment, etc. In Ophdiat, patients are
referred to an ophthalmologist because signs of DR (or other eye
pathologies) have been detected or because images are ungradable.
6,391 records were marked as relevant and 19,311 were marked as
irrelevant (prevalence: 25%). Over the 2005–2006 period, agree-
ment between graders ranged from 92% to 99% in the Ophdiat net-
work (Erginay et al., 2008).

9.2. e-ophtha—subset of manually segmented images

273 images were randomly selected from e-ophtha. One partic-
ipating ophthalmologist annotated eight types of lesions in these
5 http://reseau-ophdiat.aphp.fr.



Fig. 3. Manually segmented image. (a) Represents the resized image. (d) Displays the manually segmented lesions: blot hemorrhages (in blue), flame hemorrhages (in white),
cotton wool spots (in black) and intra-retinal microvascular abnormalities (in green). (b), (c) and (e) Represent the segmentation maps obtained for blot hemorrhages (BH),
flame hemorrhages (FH), cotton wool spots (CWS) and intra-retinal microvascular abnormalities (IRMA). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
images (see Table 2). Note that she did not systematically segment
all types of lesions present in each image. However, when she
started segmenting one type of lesions in an image, she segmented
all lesions of that type in this image. An example of manually seg-
mented image is given in Fig. 3.

9.3. Messidor dataset

The Messidor dataset6 contains 1200 eye fundus photographs
collected in three ophthalmology departments, in France, between
2005 and 2006. Images were obtained with TRC-NW6 non-mydriatic
retinographs (Topcon, Tokyo). 800 images were acquired with pupil
dilation (one drop of 10% Tropicamide); 400 were acquired without
dilation. Image sizes ranged from 1440� 960 to 2304� 1536 pixels.
For the purpose of this study, images were automatically resized and
6 http://messidor.crihan.fr/index-en.php.
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cropped to a definition of 780� 780 pixels. 654 images were marked
as relevant and 546 were marked as irrelevant.

9.4. Image features

Many image features have been proposed in the CBIR literature,
the most common being color features, texture features, shape fea-
tures and salient point descriptors (Datta et al., 2008). These fea-
tures should be chosen carefully with respect to the problem
under study. For diabetic retinopathy screening in eye fundus pho-
tographs, many patterns of interest have fuzzy edges, so salient
point descriptors likely are not relevant. On the other hand, the rel-
evance of wavelet-based texture features for diabetic retinopathy
assessment has been shown in previous studies (Quellec et al.,
2010a,). So wavelet-based features were used for texture charac-
terization (Quellec et al., 2010a). For completeness, popular shape
features, Zernike moments, were also used. Eighteen wavelet-



Table 2
Segmented lesions.

Lesion type Number of
annotated images

Number of
annotated lesions

Microaneurisms (MA) 106 663
Dot hemorrhages (DH) 63 246
Blot hemorrhages (BH) 98 383
Flame hemorrhages (FH) 46 66
Exudates (EX) 47 2648
Cotton wool spots (CWS) 80 282
Intra-retinal microvascular

abnormalities (IRMA)
25 57

Neovascularizations (NV) 25 50

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

tru
e 

po
si

tiv
e 

ra
te

false positive rate

multiresolution
scale factor j=1
scale factor j=2
scale factor j=4
scale factor j=8

scale factor j=16

Fig. 4. Classification performance in the Messidor test subset. Black circles indicate
interesting settings in a screening context.
based features and nine Zernike moments were extracted in each
color channel, respectively. Each experiment was replicated in four
different color spaces: RGB, Lab (Hunter and December, 1958),
I1I2I3 (Ohta et al., 1980), HSV (Joblove and Greenberg, 1978). This
selection of image features is of course arbitrary and a different
selection would likely lead to very different results.
9.5. Training in one half of the Messidor dataset

The Messidor dataset was randomly divided into a training sub-
set and a test subset; each subset contains one half of the Messidor
dataset.

The following parameters were trained by 2-fold cross-
validation on the training subset: the color space, the sequence
of weight updating iterations, the scale factor j, the spatial-distri-
bution parameter K, the neighborhood parameters fm; k; kmaxg
(see Sections 4 and 6). In each fold, one half of the training subset
was used as reference dataset (I) and the classification perfor-
mance was assessed, in terms of area under the ROC curve (Az),
on the other half.

A naive optimization process was used to train parameters
fK;m; k; kmaxg: each parameter was trained separately while keep-
ing the other three constant (default constant values: K ¼ 1;
m ¼ 2; k ¼ 5; kmax ¼ 1). For each fK;m; k; kmaxg combination, the
system was trained using 32 different {color space, sequence of
weight updating iterations} pairs (see Table 3): two Az values were
obtained for each pair (one per fold). The score of each
fK;m; k; kmaxg combination was defined as the average of these
64 Az values. The multiscale extension was used during the training
process. Overall, the training process lasted approximately 15 h
using an Intel Xeon E5520 processor running at 2.27 GHz.

The optimal value for fK;m; k; kmaxgwas f2;2;10;1g. These opti-
mal parameters were used in the following experiments. Cross-
validation results, obtained on the training subset with these
parameters, are reported in Table 3, in terms of average Az. In this
table, each row is associated with one sequence of image feature
(IF) weight updating and reference signature (RS) weight updating
iterations.
Table 3
Cross-validation results. The bold value indicates the highest score.

Update sequence RGB Lab I1I2I3 HSV

; 0.810 0.845 0.824 0.846
IF 0.867 0.896 0.865 0.875
RS 0.856 0.893 0.862 0.877
IF–RS 0.900 0.902 0.892 0.880
RS–RS 0.860 0.857 0.811 0.840
IF–IF 0.892 0.886 0.878 0.867
IF–IF–RS 0.885 0.896 0.892 0.879
IF–RS–RS 0.859 0.885 0.863 0.866
IF–RS–IF 0.900 0.900 0.894 0.881

8

The best performance was obtained using the Lab color space,
with one iteration of image feature weight updating followed by
one iteration of reference signature weight updating (IF–RS). At
the end of the training process, the image feature weights and
the reference signature weights were re-trained using the entire
training subset as reference dataset (I). Unless mentioned other-
wise, the same reference dataset and the same weights were used
in the following experiments.
9.6. Testing global relevance assessment in the other half of the
Messidor dataset

The ROC curves obtained on the Messidor test subset are re-
ported in Fig. 4. The corresponding areas under the ROC curve
(Az) are reported in Table 4 together with the total processing time
per image (T), using one core of an Intel Xeon E5520 processor.

Up to scale factor j ¼ 8, performance increases with the scale
factor (see Fig. 4). However, performance drops at j ¼ 16. This is
likely due to the small number of pixels per patch (48� 48), which
may lead to unreliable texture feature values. When the false posi-
tive rate is set to 50% (respectively 70%), meaning that 50% (respec-
tively 30%) of the healthy patient records do not need to be seen by
an ophthalmologist, the false negative rate is 4.7% (respectively 0%).

A comparison with Diverse Density (Maron and Lozano-Pérez,
1998) and Random Forests7 (Breiman, 2001), using the same image
features and the same patch geometry, is also reported. We remind
the reader that Diverse Density is a multiple-instance learning frame-
work. Random Forests are not: each image must be characterized by a
single feature vector. This feature vector was obtained by concate-
nating the signatures of all patches in alphabetical order of their
location ðx; yÞ. The parameters of the Random Forests were trained
by 2-fold cross-validation in the Messidor training subset: in partic-
ular, 50 trees were generated per forest. For scale factor j ¼ 1, i.e.
when there is only one patch per image, Random Forests outperform
all other frameworks. However, the performance of Random Forests
decreases as j increases. This is simply because lesions are not al-
ways at the same location in two semantically similar images.

In the Messidor dataset, the proposed framework outperformed
a recently published DR detection algorithm by Agurto et al. (2010):
an area under the ROC curve of Az ¼ 0:84 was achieved by Agurto’s
algorithm on a selection of 400 images from the Messidor dataset
7 http://www.alglib.net/—dforest subpackage.



Table 4
Classification performance in the Messidor test subset. The bold value indicates the highest score for each method.

Method Figure of merit Scale factor (j)

0 1 2 4 8 16 Multiscale

Proposed Az 0.738 0.760 0.852 0.860 0.702 0.881
method T (s) 0.551 0.652 1.04 3.35 12.8 13.2

Diverse Az 0.663 0.687 0.708 0.699 0.616
Density T (s) 0.550 0.648 0.992 2.84 10.4

Random Az 0.757 0.750 0.743 0.709 0.647
Forests T (s) 0.550 0.646 0.982 2.77 9.91
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Fig. 5. Classification performance in e-ophtha with respect to the size of the
reference dataset. Black circles indicate interesting settings in a screening context.

Table 5
Classification performance in e-ophtha. The bold value indicates the highest score.

Figure of merit Size of the reference dataset jIj

75 150 300 600 1200

Az 0.658 0.708 0.759 0.761 0.754
T (s) 3.07 3.16 3.25 3.34 3.44
(computation times are not available). It also slightly outperformed
Antal et al.’s (2011) framework, which relies on targeted lesion
detectors (Az ¼ 0:87Þ. Note that Giancardo et al. (2012) reported
similarly high Az scores in the Messidor dataset, but regarding the
detection of a different pathology: diabetic macular edema.

9.7. Testing global relevance assessment in e-ophtha

In this experiment, the system was trained using images from
Messidor and tested in e-ophtha, an independent dataset.

Let us remind the reader that, in e-ophtha (see Section 9.1), rel-
evance labels are not assigned to images alone, but to examination
records as a whole: each examination E record usually contains
four images (see Section 9.1), but this number can vary: it ranges
from 1 to 19. To measure the performance of global relevance
assessment in this dataset, the global relevance score for E was de-
fined as follows (m 2 N1):

rðEÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

number of images inE
X

I2E;x;y
rðIj;x;yÞ
�� ��mm

s
ð24Þ

We evaluated how the size jI j of the reference dataset impacts
the performance of global relevance assessment. Five values for jI j
were tested: 75, 150, 300, 600 and 1200. For jI j ¼ 1200; I was the
entire Messidor dataset. For jI j ¼ 600; I was the Messidor training
subset (see Section 9.5). For the remaining values of jI j; I was se-
lected at random in the Messidor dataset. The weights were re-
trained for each value of jI j.

The ROC curves obtained on e-ophtha, at scale j ¼ 8 (see Table 4),
are reported in Fig. 5. The corresponding areas under the ROC curve
9

(Az) are reported in Table 5 together with the total processing time
per image (T). It can be seen that, for jI jP 300, the classification
performance is little dependent on the size of the reference dataset.

Then, we evaluated how the proportion of irrelevant and
relevant images in the reference dataset, noted p0, impacts the
performance of global relevance assessment. Three reference data-
sets of 300 images were selected at random in the Messidor data-
set: one with p0 ¼ 0:25, one with p0 ¼ 0:55 (the prevalence in
Messidor) and one with p0 ¼ 0:75. The performance on e-ophtha
was respectively Az ¼ 0:719;Az ¼ 0:759 and Az ¼ 0:702.

When the false positive rate is set to 50% (respectively 70%), the
false negative rate is 15.7% (respectively 7.6%) in the best scenario
(jI j ¼ 300; p0 ¼ 0:55, see Fig. 5). Ideally, the false negative rate
should be zero. Among these false negatives, 6 patients (respec-
tively 1 patient) have proliferative DR; in e-ophtha, 123 patients
have proliferative DR. Furthermore, among these false negatives,
images were considered ungradable by ophthalmologists in 172
records (respectively 69 records); in e-ophtha, images were con-
sidered ungradable in 2,167 records.
9.8. Testing local relevance assessment in manually segmented images

In this experiment, a local relevance score was computed for
each patch of the 273 manually segmented images (see Section
9.2) and and each patch of 200 randomly selected irrelevant
images from e-ophtha. The Messidor training subset was used as
reference dataset. To evaluate these local relevance scores,
lesion-specific local relevance labels were assigned to each patch,
as explained hereafter. Suppose the ophthalmologist segmented
all lesions of type l in image I; l 2 fMA;DH;BH; FH; EX;CWS; IRMA;
NVg (see Table 2). Then, an l-label map was built for I. Each patch
of I having a non-zero intersection with the l-segmentation map
(see Fig. 3) was labeled as l-relevant; the others were labeled as
l-irrelevant. This process is illustrated in Fig. 6.

Now that local relevance labels are assigned to each patch, local
relevance scores can be evaluated through a ROC analysis. A ROC
curve was built for each lesion type l. To build this ROC curve,
we used (1) the relevance score of each (l-irrelevant) patch in the
set of 200 randomly selected irrelevant images and (2) the rele-
vance score of each l-relevant patch in manually segmented
images. For instance, 106 manually segmented images were used
to evaluate MA detection. These ROC curves are reported in Fig. 7.



Fig. 6. Evaluating local relevance scores. The CWS- and IRMA-segmentation maps in images (b) and (c) are converted into CWS- and IRMA-label maps in images (e) and (f).
Local relevance scores, computed by the proposed framework, are displayed in image (d). To obtain the CWS-label map, a binary label was assigned to each image patch. A
patch was assigned a ‘CWS-relevant’ label if and only if it had a non-zero intersection with the CWS-segmentation map (image (b)). Note that, although labels are binary, the
visual representation of the CWS-label map (image (e)) is not binary. The reason is that patches overlap (see Fig. 2b). In image (e), the intensity of a pixel is proportional to the
number of patches that were assigned a ‘CWS-relevant’ label among all patches intersecting the pixel. As a result, the CWS-label map is a dilated version of the CWS-
segmentation map. A similar process was used to build image (d) and (f).
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Fig. 7. Local relevance assessment. The area under the ROC curves range from
Az ¼ 0:671 (EX – exudates) to Az ¼ 0:721 (NV – neovascularizations).
10. Discussion and conclusions

A Multiple-instance learning framework for finding relevant
patterns in images was presented in this paper. It only needs a ref-
erence image dataset, in which images have been annotated by cli-
nicians as relevant or irrelevant, for supervision. Given a set of
image features, the importance of each image feature, and of each
reference signature itself, is weighted by a novel weight updating
procedure. Both a single- and a multi-resolution implementation
were presented.

The proposed framework was successfully applied to diabetic
retinopathy screening in two eye fundus image datasets: Messidor
(1200 images) and e-ophtha (107,799 images). In the Messidor
dataset, the proposed framework achieved an area under the ROC
curve of Az ¼ 0:881. It compared favorably with Random Forests, a
popular single-instance learner, using the same image features
10
(Az ¼ 0:757). This comparison shows the interest of multiple-in-
stance learning in this application. Using the multi-resolution ap-
proach, the proposed framework outperformed previously
published results (Agurto et al., 2010; Antal et al., 2011). Of course,
classification performance and computation times are a trade-off:
with the multi-resolution approach, the average processing time
was 13.2s per image. Much faster results were obtained with
the single-resolution approach: computation times drop to 1.04 s
using a scale factor j = 4. With this setup, a performance of
Az ¼ 0:852 (Az > 0:84) was obtained. The proposed framework
was also applied to e-ophtha. This dataset is more challenging in
that relevance labels are not assigned to individual images but to
examination records as a whole: each record contains four images
on average. Besides, about 10% of examination records were re-
garded by experts as ungradable due to poor image quality. In that
respect, a performance of Az ¼ 0:761 is satisfactory. We observed,
in a subset of 273 manually segmented images, that all eight types
of diabetic retinopathy lesions are locally detected with an area
under the ROC curve ranging from Az ¼ 0:671 (exudates) to
Az ¼ 0:721 (neovascularizations). It should be noted that the sys-
tem also detects mild textural abnormalities that were not manu-
ally detected and were therefore erroneously counted as false
alarms. Among other factors, these textural abnormalities can be
due to cataract or retinal epithelial pigment variations. Besides,
even if the detections are not perfect locally, the integration of
all local detections over the entire examination record proved
efficient.

The proposed framework has several advantages.

1. Previous DR screening systems target individual lesions. How-
ever, what characterizes the appearance of a lesion or an image
as abnormal, is sometimes a complex set of interconnected ele-
ments, at different scales. By taking this factor into account, the
proposed framework has the ability to push classification per-
formance further. In the proposed framework, unlike other
MIL frameworks, relevant image patterns are identified by the
image features themselves, and not necessarily by salient



points. This property is particularly well suited to medical
images, in which relevant patterns may only be visible through
subtle textural or color changes (that would be missed by sali-
ent point detectors).

2. Previous systems rely on manual lesion segmentations for
supervision. However, clinicians often do not work in such a
manner: they do not necessarily count lesions. Moreover, they
may not be able to explicitly indicate which image patterns
incite them to classify an image as relevant or irrelevant,
though they know at a global level that the image is relevant.
This framework is more in accordance with clinicians’
reasoning.

3. The proposed framework is trained and validated using existing
clinical data and records as they are. Clinicians are not asked
additional work: the refer/do not refer decision is the standard
one taken in DR screening. So, the proposed approach is well
suited to clinician’s practice.

4. This framework could be applied to a variety of medical appli-
cations: it is useful whenever obtaining accurate ground truth
in large datasets is difficult, a recurrent problem in medical
applications.

The framework also has limitations.

1. Compared to previous systems, many parameters need to be
trained. As a consequence, the training procedure is complex
and takes a lot of time.

2. Performance likely depends heavily on which image features
were used to characterize image patches. Therefore, it is
assumed that users know which features may be relevant in
their application.

3. The system relies on reference datasets in which several cli-
nicians labeled non-overlapping sets of images indepen-
dently. Agreement between clinicians can be as low as
92%. These disagreements were not taken into account in
the system.

These limitations will be addressed in future works. First, in
order to reduce training times, we will study which parameters
are application-independent and which parameters need to be
re-trained. Second, a procedure to generate an optimal set of inde-
pendent features from data will be proposed. So far, feature gener-
ation requires manual segmentations (Quellec et al., 2011b): a
multiple-instance learning extension will be proposed. Third, the
proposed approach will be extended to relevance regression. This
extension will have at least two implications: (1) it will allow cli-
nicians to indicate a relevance degree and (2) it will allow multi-
ple-clinician labeling: þ (resp. �) will be replaced by the
percentage of clinicians that labeled each image as relevant (resp.
irrelevant). Finally, regarding DR screening, we have started
including demographic and biological data into the system, as well
as other dedicated image processing algorithms, to push perfor-
mance further.

In summary, a novel multiple-instance learner for automatic
medical image classification was presented and its relevance was
shown in large retinal image datasets.
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Appendix A. Multiscale extension

In the basic method above, a single scale factor is used to define
patches. In the multiscale extension, scale factors are in
f1;2;4;8; . . . ; Jg, J 2 N1. A multiscale local relevance score is de-
fined in Section A.1. This multiscale relevance score is associated
with a multiscale weight updating strategy (see Section A.2). The
global multiscale relevance score is defined in Section A.3.
A.1. Multiscale local relevance score

Let I be an image. Let IJ;x;y be a patch of I, at the highest scale J,
and let s be its signature.

For the multiscale relevance score definition, we define set SjðsÞ
and function x. Set SjðsÞ contains the signature of all patches of I,
at scale j, that overlap with IJ;x;y (see Fig. 8). xðs;uÞ 2 ½0; 1� denotes
the fraction of a patch described by u 2 SjðsÞ that overlaps with
IJ;x;y. The multiscale local relevance score for IJ;x;y combines one-
scale relevance probabilities computed for signatures
u 2 SjðsÞ; j 2 f1;2;4;8; . . . ; Jg, with respect to xðs;uÞ.

Image feature weights are now scale-specific, i.e. md becomes
md;j. /þmðsÞ, originally defined in Eq. (7), now becomes:

/þmðsÞ ,
X

j2f1;2;4;8;...;Jg

X
u2SjðsÞ

xðs;uÞ �
X

t2Nþ uð Þ

kðtÞ
XD

d¼1

md;j/m;dðu; tÞ

8<:
9=;ðA:1Þ

/�mðsÞ is modified similarly. That being said, the relevance score for
IJ;x;y remains unchanged: it is given by Eq. (5). Weight updating, on
the other hand, was slightly modified as explained below.
A.2. Multiscale weight updating

Let sðeÞ; e ¼ 1 . . . E, be the irrelevant signatures describing a
patch at scale J such that p sðeÞ

� �
> p0.
A.2.1. Image feature weight updating
For image feature weight updating, we would like to multiply

the weight md;j of each feature d, at each scale j, by a coefficient
xd;j 2 R, such that p sðeÞ

� �
¼ p0 after multiplication.

In the multiscale framework, Eq. (10) becomes:

0 ¼
XD

d¼1

xd;jmd;j

X
j2f1;2;4;8;...;Jg

X
u2SjðsðeÞÞ

x sðeÞ;u
� �

� pðsðeÞÞ � p0

� �
/m;dðuÞ þ /þm;dðuÞ

� �
SðuÞ � /m;dðuÞS

þðuÞ
n o

ðA:2Þ

The system to solve is similar to (11) (and therefore (14)), except
that there are now f1;2;4;8; . . . ; Jgj jD unknowns (xd;j;d ¼
1 . . . D; j 2 f1;2;4;8; . . . ; Jg) instead of D.
A.2.2. Reference signature weight updating
For reference signature weight updating, we would like to

multiply the weight kðtÞ of each possibly-relevant signature t in
the neighborhood of sðeÞ by a coefficient xðsðeÞÞ 2 R, such that
p sðeÞ
� �

¼ p0 after multiplication. In the multiscale framework, t
does not necessarily belongs to Nþ sðeÞ

� �
, but rather to

Nþ uð Þ;u 2 SjðsðeÞÞ (see Eq. (A.1)).
Eq. (16), that provides the best xðsðeÞÞ coefficient, still holds in

the multiscale framework. The only thing that changes is the
way kðtÞ is globally updated, using all xðsðeÞÞ local estimates: each
equation in system (17) is now weighted by xðs;uÞ pðsðeÞÞ � p0

� �
,

not simply pðsðeÞÞ � p0.



Fig. 8. Multiscale relevance score geometry. Let I be an image and s be a signature describing a patch of I at scale J ¼ 4 (see (b)). As seen on (a),
S2ðsÞ ¼ fa; e; g; ig;xðs;aÞ ¼ 1

4 ;xðs; eÞ ¼ 1
8 ;xðs; gÞ ¼ 1

8 and xðs; iÞ ¼ 1
16.
A.3. Multiscale global relevance score

In the multiscale extension, local relevance scores computed for
patches at the highest scale integrate local relevance scores com-
puted at lower scales (see Eq. (A.1)). As a consequence, the global
relevance score simply is:

rðIÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

x;y
rðIJ;x;yÞ
�� ��mm

q
ðA:3Þ
Appendix B. Generalization to higher-dimensional images

Should the proposed framework be applied to n-dimensional
images, n – 2, the only things that need to be changed is the shape
and the spatial distribution of patches (see Section 5). patches are
no longer rectangles but, more generally, parallelotopes. patches
are no longer organized in K2 patch grids per scale (see Fig. 2)
but in Kn patch grids. Sections 6 and 7 are unchanged. In A,
function x needs to be adapted to the new shape and the new
spatial distribution of patches. Note that time can be one of the n
dimensions.
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