On the asymptotic behavior of Einstein manifolds with an integral bound on the Weyl curvature - Archive ouverte HAL
Article Dans Une Revue Communications in Analysis and Geometry Année : 2013

On the asymptotic behavior of Einstein manifolds with an integral bound on the Weyl curvature

Résumé

In this paper we consider the geometric behavior near infinity of some Einstein manifolds $(X^n, g)$ with Weyl curvature belonging to a certain $L^p$ space. Namely, we show that if $(X^n, g)$, $n \geq 7$, admits an essential set and has its Weyl curvature in $L^p$ for some $1

Dates et versions

hal-00783613 , version 1 (01-02-2013)

Identifiants

Citer

Romain Gicquaud, Dandan Ji, Yuguang Shi. On the asymptotic behavior of Einstein manifolds with an integral bound on the Weyl curvature. Communications in Analysis and Geometry, 2013, 21 (5), pp.1081-1113. ⟨hal-00783613⟩
86 Consultations
0 Téléchargements

Altmetric

Partager

More