On the asymptotic behavior of Einstein manifolds with an integral bound on the Weyl curvature
Résumé
In this paper we consider the geometric behavior near infinity of some Einstein manifolds $(X^n, g)$ with Weyl curvature belonging to a certain $L^p$ space. Namely, we show that if $(X^n, g)$, $n \geq 7$, admits an essential set and has its Weyl curvature in $L^p$ for some $1
Romain Gicquaud : Connectez-vous pour contacter le contributeur
https://hal.science/hal-00783613
Soumis le : vendredi 1 février 2013-13:22:28
Dernière modification le : lundi 1 juillet 2024-15:34:04
Citer
Romain Gicquaud, Dandan Ji, Yuguang Shi. On the asymptotic behavior of Einstein manifolds with an integral bound on the Weyl curvature. Communications in Analysis and Geometry, 2013, 21 (5), pp.1081-1113. ⟨hal-00783613⟩
86
Consultations
0
Téléchargements