The Riemannian Potato: an automatic and adaptive artifact detection method for online experiments using Riemannian geometry - Archive ouverte HAL Access content directly
Conference Papers Year : 2013

The Riemannian Potato: an automatic and adaptive artifact detection method for online experiments using Riemannian geometry

Anton Andreev
  • Function : Author
  • PersonId : 936064
Marco Congedo

Abstract

Artifacts management is a critical problem in any applications involving on-line processing of EEG signals. This paper presents a multivariate automatic and adaptive method for identifying artifacts in continuous EEG data.
Fichier principal
Vignette du fichier
Barachant_tobi_IV.pdf (182.24 Ko) Télécharger le fichier
patate2.avi (50.12 Mo) Télécharger le fichier
presentation.pdf (1.49 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Format : Other
Format : Other

Dates and versions

hal-00781701 , version 1 (28-01-2013)

Identifiers

  • HAL Id : hal-00781701 , version 1

Cite

Alexandre Barachant, Anton Andreev, Marco Congedo. The Riemannian Potato: an automatic and adaptive artifact detection method for online experiments using Riemannian geometry. TOBI Workshop lV, Jan 2013, Sion, Switzerland. pp.19-20. ⟨hal-00781701⟩
807 View
1692 Download

Share

Gmail Facebook Twitter LinkedIn More