The Riemannian Potato: an automatic and adaptive artifact detection method for online experiments using Riemannian geometry
Abstract
Artifacts management is a critical problem in any applications involving on-line processing of EEG signals. This paper presents a multivariate automatic and adaptive method for identifying artifacts in continuous EEG data.
Fichier principal
Barachant_tobi_IV.pdf (182.24 Ko)
Télécharger le fichier
patate2.avi (50.12 Mo)
Télécharger le fichier
presentation.pdf (1.49 Mo)
Télécharger le fichier
Origin : Files produced by the author(s)
Format : Other
Format : Other