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Abstract. Artifacts management is a critical problem in any applications involving on-line processing 
of EEG signals. This paper presents a multivariate automatic and adaptive method for identifying 
artifacts in continuous EEG data.  
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1. Introduction 
In this work we consider as artifacts any kind of EEG signal different enough as compared to the 

normal baseline signal. Based on this new definition, covariance matrices are used as descriptors of 
EEG signals and a Riemannian metric is employed to compare these covariance matrices with an 
average covariance matrix estimated on the signal baseline. This framework is not specific to a 
particular kind of artifacts and allows us to take into account the spatial properties of the artifacts. A 
practical implementation of this method will be described, and results of the online detection will be 
shown.  

2. Methods 
The goal of the detection algorithm is to determine if a portion of EEG signal TNX ×ℜ∈ recorded 

during a time window of T samples over N electrodes contains artifacts. In order to achieve this, a trial 

X will be represented by its spatial covariance matrix TXX
T
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and the criterion for the detection 

will be based on a Riemannian distance computation. The main idea is to estimate a reference 
covariance matrix C and reject every trial which is too far, in term of Riemannian distance, from this 
reference matrix. The Riemannian distance between C and C is defined by [Förstner and Moonen, 
1999]: 
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CCC . The trial corresponding to C will be considered as an 

artifacts if 
Rd is greater than a threshold th. Thus, the detection algorithm requires two parameters: C , 

the reference point in the Riemannian manifold and the threshold th for the detection. The estimation of 
those two parameters is the important part of the algorithm. The reference point could be estimated in 
an adaptive manner during the whole recording session according to the following equation: 
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with 
tC the reference matrix from the previous iteration, C the current covariance matrix andα a 

coefficient which defines the speed of the adaptation. This adaptation is done only when clean signal is 
detected, i.e., the distance is lower than the threshold. The threshold th is estimated based on the mean 
µ and standard deviation σ of the distance to the reference matrix defined in Eq. 1 :  
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