Modulus of continuity of some conditionally sub-Gaussian fields, application to stable random fields - Archive ouverte HAL
Article Dans Une Revue Bernoulli Année : 2015

Modulus of continuity of some conditionally sub-Gaussian fields, application to stable random fields

Hermine Biermé
  • Fonction : Auteur
  • PersonId : 946725
Céline Lacaux

Résumé

In this paper we study modulus of continuity and rate of convergence of series of conditionally sub-Gaussian random fields. This framework includes both classical series representations of Gaussian fields and LePage series representations of stable fields. We enlighten their anisotropic properties by using an adapted quasi-metric instead of the classical Euclidean norm. We specify our assumptions in the case of shot noise series where arrival times of a Poisson process are involved. This allows us to state unified results for harmonizable (multi)operator scaling stable random fields through their LePage series representation, as well as to study sample path properties of their multistable analogous.
Fichier principal
Vignette du fichier
Mod-Cont-SG-Bierme-Lacaux-rev.pdf (529.25 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00780684 , version 1 (24-01-2013)
hal-00780684 , version 2 (13-01-2015)

Identifiants

Citer

Hermine Biermé, Céline Lacaux. Modulus of continuity of some conditionally sub-Gaussian fields, application to stable random fields. Bernoulli, 2015, 21 (3), pp.1719-1759. ⟨10.3150/14-BEJ619⟩. ⟨hal-00780684v2⟩
250 Consultations
252 Téléchargements

Altmetric

Partager

More