Nonparametric density estimation in compound Poisson process using convolution power estimators. - Archive ouverte HAL
Article Dans Une Revue Metrika Année : 2014

Nonparametric density estimation in compound Poisson process using convolution power estimators.

Résumé

Consider a compound Poisson process which is discretely observed with sampling interval $\Delta$ until exactly $n$ nonzero increments are obtained. The jump density and the intensity of the Poisson process are unknown. In this paper, we build and study parametric estimators of appropriate functions of the intensity, and an adaptive nonparametric estimator of the jump size density. The latter estimation method relies on nonparametric estimators of $m$-th convolution powers density. The $L^2$-risk of the adaptive estimator achieves the optimal rate in the minimax sense over Sobolev balls. Numerical simulation results on various jump densities enlight the good performances of the proposed estimator.
Fichier principal
Vignette du fichier
GenonContribMetrika.pdf (4.12 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00780300 , version 1 (23-01-2013)

Identifiants

Citer

Fabienne Comte, Céline Duval, Valentine Genon-Catalot. Nonparametric density estimation in compound Poisson process using convolution power estimators.. Metrika, 2014, 77 (1), pp.163-183. ⟨10.1007/s00184-013-0475-3⟩. ⟨hal-00780300⟩
737 Consultations
400 Téléchargements

Altmetric

Partager

More