Steam methane reforming reaction process intensification by using a millistructured reactor: Experimental setup and model validation for global kinetic reaction rate estimation
Résumé
In the frame of steam methane reforming process intensification, a highly active and stable catalyst based on rhodium with catalyst formulation and structure adapted to millistructured reactors has been formulated. This catalyst has been tested in industrial conditions (800, 850 or 900 degrees C and 20 bars) on a single channel which is representative of one channel of a more complex millistructured SMR reactor. Then, a detailed mathematical model for acquisition of the global reaction kinetics with this new catalyst has been developed and validated from experimental catalytic tests. The developed kinetics is dependent of the catalyst microstructure. This study presents the set-up, the model, the experimental catalytic runs and the global kinetics estimation protocol. It demonstrates, on one hand, that millistructured reactor is suitable for kinetic data acquisition and, on the other hand, the possibility of SMR process intensification, for improved energy efficiency and process size reduction.