Automatic skeletal muscle segmentation through random walks and graph-based seed placement - Archive ouverte HAL
Communication Dans Un Congrès Année : 2012

Automatic skeletal muscle segmentation through random walks and graph-based seed placement

Résumé

In this paper we propose a novel skeletal muscle segmentation method driven from discrete optimization. We introduce a graphical model that is able to automatically determine appropriate seed positions with respect to the different muscle classes. This is achieved by taking into account the expected local visual and geometric properties of the seeds through a pair-wise Markov Random Field. The outcome of this optimization process is fed to a powerful graphbased diffusion segmentation method (random walker) that is able to produce very promising results through a fully automated approach. Validation on challenging data sets demonstrates the potentials of our method.
Fichier principal
Vignette du fichier
article_reviewed.pdf (987.69 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00773616 , version 1 (05-02-2013)

Identifiants

Citer

Pierre-Yves Baudin, Noura Azzabou, Pierre G. Carlier, Nikos Paragios. Automatic skeletal muscle segmentation through random walks and graph-based seed placement. International Symposium Biomedical Imaging (ISBI), May 2012, Barcelone, Spain. pp.1036--1039, ⟨10.1109/isbi.2012.6235735⟩. ⟨hal-00773616⟩
901 Consultations
373 Téléchargements

Altmetric

Partager

More