Spinc-quantization and the K-multiplicities of the discrete series - Archive ouverte HAL
Article Dans Une Revue Annales Scientifiques de l'École Normale Supérieure Année : 2003

Spinc-quantization and the K-multiplicities of the discrete series

Résumé

In the 70s, W. Schmid has shown that the representations of the discrete series of a real semi-simple Lie group G could be realized as the quantization of elliptic coadjoint orbits. In this paper we show that such orbits, equipped with the Hamiltonian action of a maximal compact subgroup K of G, are non-compact examples where the philosophy of Guillemin-Sternberg "Quantization commutes with reduction" applies. If H(O) is a representation of the discrete series of G associated to a coadjoint orbit O, we express the K-multiplicities of H(O) in terms of Spinc-index on symplectic reductions of O.
Fichier principal
Vignette du fichier
arxiv-ENS-pep-2003.pdf (532.47 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00773251 , version 1 (12-01-2013)

Identifiants

Citer

Paul-Emile Paradan. Spinc-quantization and the K-multiplicities of the discrete series. Annales Scientifiques de l'École Normale Supérieure, 2003, 36 (5), pp.805-845. ⟨10.1016/j.ansens.2003.03.001⟩. ⟨hal-00773251⟩
89 Consultations
145 Téléchargements

Altmetric

Partager

More