On the composition of convex envelopes for quadrilinear terms - Archive ouverte HAL
Chapitre D'ouvrage Année : 2013

On the composition of convex envelopes for quadrilinear terms

Résumé

Within the framework of the spatial Branch-and-Bound algorithm for solving mixed-integer nonlinear programs, different convex relaxations can be obtained for multilinear terms by applying associativity in different ways. The two groupings ((x1x2)x3)x4 and (x1x2x3)x4 of a quadrilinear term, for example, give rise to two different convex relaxations. In Cafieri et al. (J Global Optim 47:661-685, 2010) we prove that having fewer groupings of longer terms yields tighter convex relaxations. In this chapter we give an alternative proof of the same fact and perform a computational study to assess the impact of the tightened convex relaxation in a spatial Branch-and-Bound setting.
Fichier principal
Vignette du fichier
BelCLLM12.pdf (112.2 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00769671 , version 1 (02-01-2013)

Identifiants

Citer

Pietro Belotti, Sonia Cafieri, Jon Lee, Leo Liberti, Andrew J. Miller. On the composition of convex envelopes for quadrilinear terms. Optimization, Simulation, and Control, Springer Verlag, pp 1-16, 2013, Springer Optimization and Its Applications, Volume 76, 978-1-4614-5130-3. ⟨10.1007/978-1-4614-5131-0_1⟩. ⟨hal-00769671⟩
334 Consultations
246 Téléchargements

Altmetric

Partager

More