The mapping torus of a free group automorphism is hyperbolic relative to the canonical subgroups of polynomial growth. - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2008

The mapping torus of a free group automorphism is hyperbolic relative to the canonical subgroups of polynomial growth.

Résumé

We prove that the mapping torus group of any automorphism of a free group of finite rank n => 2 is weakly hyperbolic relative to the canonical (up to conjugation) family of subgroups of the free group which consists of (and contains representatives of all) conjugacy classes that grow polynomially under iteration of the automorphism. Furthermore, we show that the mapping-torus group is strongly hyperbolic relative to the mapping torus of this canonical family.
Fichier principal
Vignette du fichier
GauteroLustigII.pdf (373.99 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00769025 , version 1 (27-12-2012)

Identifiants

  • HAL Id : hal-00769025 , version 1

Citer

François Gautero, Martin Lustig. The mapping torus of a free group automorphism is hyperbolic relative to the canonical subgroups of polynomial growth.. 2008. ⟨hal-00769025⟩
138 Consultations
89 Téléchargements

Partager

More