MAX-FLMin: An Approach for Mining Maximal Frequent Links and Generating Semantical Structures from Social Networks - Archive ouverte HAL
Communication Dans Un Congrès Database (Weston, Conn.) and Expert Systems Applications Année : 2012

MAX-FLMin: An Approach for Mining Maximal Frequent Links and Generating Semantical Structures from Social Networks

Résumé

The paper proposes a new knowledge discovery method called MAX-FLMin for extracting frequent patterns in social networks. Unlike traditional approaches that mainly focus on the network topological structure, the originality of our solution is its ability to exploit information both on the network structure and the attributes of nodes in order to elicit specific regularities that we call "Frequent Links". This kind of patterns provides relevant knowledge about the groups of nodes most connected within the network. First, we detail the method proposed to extract maximal frequent links from social networks. Second, we show how the extracted patterns are used to generate aggregated networks that represent the initial social network with more semantics. Qualitative and quantitative studies are conducted to evaluate the performances of our algorithm in various configurations.
Fichier non déposé

Dates et versions

hal-00767052 , version 1 (19-12-2012)

Identifiants

Citer

Erick Stattner, Martine Collard. MAX-FLMin: An Approach for Mining Maximal Frequent Links and Generating Semantical Structures from Social Networks. Database and Expert Systems Applications (DEXA), 2012, Vienna, Austria. pp.468-483, ⟨10.1007/978-3-642-32600-4_35⟩. ⟨hal-00767052⟩
89 Consultations
0 Téléchargements

Altmetric

Partager

More