A complete set of multidimensional Bell inequalities - Archive ouverte HAL
Article Dans Une Revue Journal of Physics A: Mathematical and Theoretical Année : 2012

A complete set of multidimensional Bell inequalities

François Arnault
  • Fonction : Auteur
  • PersonId : 916355
  • IdRef : 035350881
DMI

Résumé

We give a multidimensional generalization of the complete set of Bell-correlation inequalities given by Werner and Wolf (2001 Phys. Rev. A 64 032112) and by Zˆukowski and Brukner (2002 Phys. Rev. Lett. 88 210401), for the two-dimensional case. Our construction applies to the n-party, two-observable case, where each observable is d-valued. The inequalities obtained involve homogeneous polynomials. They define the facets of a polytope in a complex vector space of dimension dn. We detail the inequalities obtained in the case d = 3 and, from them, we recover known inequalities. We finally explain how the violations of our inequalities by quantum mechanics can be computed and could be observed, when using unitary observables.

Dates et versions

hal-00766681 , version 1 (18-12-2012)

Identifiants

Citer

François Arnault. A complete set of multidimensional Bell inequalities. Journal of Physics A: Mathematical and Theoretical, 2012, 45, pp.255304. ⟨10.1088/1751-8113/45/25/255304⟩. ⟨hal-00766681⟩

Collections

UNILIM CNRS XLIM
36 Consultations
0 Téléchargements

Altmetric

Partager

More