Multiplicative Noise Removal via a Learned Dictionary - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Image Processing Année : 2012

Multiplicative Noise Removal via a Learned Dictionary

Yu-Mei Huang
  • Fonction : Auteur
  • PersonId : 934140
Lionel Moisan
Michael Ng
  • Fonction : Auteur
  • PersonId : 934141
Tieyong Zeng
  • Fonction : Auteur correspondant
  • PersonId : 934142

Connectez-vous pour contacter l'auteur

Résumé

Multiplicative noise removal is a challenging image processing problem, and most existing methods are based on the maximum a posteriori formulation and the logarithmic transformation of multiplicative denoising problems into additive denoising problems. Sparse representations of images have shown to be efficient approaches for image recovery. Following this idea, in this paper, we propose to learn a dictionary from the logarithmic transformed image, and then to use it in a variational model built for noise removal. Extensive experimental results suggest that in terms of visual quality, peak signal-to-noise ratio, and mean absolute deviation error, the proposed algorithm outperforms state-of-the-art methods.
Fichier non déposé

Dates et versions

hal-00765087 , version 1 (14-12-2012)

Identifiants

Citer

Yu-Mei Huang, Lionel Moisan, Michael Ng, Tieyong Zeng. Multiplicative Noise Removal via a Learned Dictionary. IEEE Transactions on Image Processing, 2012, 21 (11), pp.4534-4543. ⟨10.1109/TIP.2012.2205007⟩. ⟨hal-00765087⟩
93 Consultations
0 Téléchargements

Altmetric

Partager

More