Optimal non-reversible linear drift for the convergence to equilibrium of a diffusion - Archive ouverte HAL
Article Dans Une Revue Journal of Statistical Physics Année : 2013

Optimal non-reversible linear drift for the convergence to equilibrium of a diffusion

Résumé

We consider non-reversible perturbations of reversible diffusions that do not alter the invariant distribution and we ask whether there exists an optimal perturbation such that the rate of convergence to equilibrium is maximized. We solve this problem for the case of linear drift by proving the existence of such optimal perturbations and by providing an easily implementable algorithm for constructing them. We discuss in particular the role of the prefactor in the exponential convergence estimate. Our rigorous results are illustrated by numerical experiments.

Dates et versions

hal-00761688 , version 1 (06-12-2012)

Identifiants

Citer

Tony Lelièvre, Francis Nier, Grigorios A. Pavliotis. Optimal non-reversible linear drift for the convergence to equilibrium of a diffusion. Journal of Statistical Physics, 2013, 152 (2), pp.237-274. ⟨10.1007/s10955-013-0769-x⟩. ⟨hal-00761688⟩
688 Consultations
0 Téléchargements

Altmetric

Partager

More