High Temperature Ageing of Fe-based Nanocrystalline Ribbons
Résumé
The impact of long-term high-temperature stress on nanocrystalline Finemet materials is measured by keeping samples at 200 °C for 1300 hours. The standard industrialized, high permeability Finemet materials as well as the recently available low permeability Finemet materials are investigated. Characterizations are performed at different frequencies, temperatures and magnetic field excitations on both aged and non-aged samples. Their complex permeability is also measured during the ageing test. Irreversible changes are pointed out on permeability, coercive field and magnetic flux density at saturation. Regarding the design considerations for high temperature power electronics, the suitability of these materials is demonstrated but an ageing effect has to be considered nonetheless. The presented data can be extrapolated to several thousand hours at 200 °C using the presented empiric ageing law.