Log-uniruled affine varieties without cylinder-like open subsets
Résumé
A classical result of Miyanishi-Sugie and Keel-McKernan asserts that for smooth affine surfaces, affine-uniruledness is equivalent to affine-ruledness, both properties being in fact equivalent to the negativity of the logarithmic Kodaira dimension. Here we show in contrast that starting from dimension three, there exists smooth affine varieties which are affine-uniruled but not affine-ruled.
Domaines
Géométrie algébrique [math.AG]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...