On Matrices, Automata, and Double Counting in Constraint Programming - Archive ouverte HAL
Article Dans Une Revue Constraints Année : 2013

On Matrices, Automata, and Double Counting in Constraint Programming

Résumé

Matrix models are ubiquitous for constraint problems. Many such problems have a matrix of variablesM, with the same constraint C defined by a finitestate automaton A on each row ofMand a global cardinality constraint gcc on each column of M. We give two methods for deriving, by double counting, necessary conditions on the cardinality variables of the gcc constraints from the automaton A. The first method yields linear necessary conditions and simple arithmetic constraints. The second method introduces the cardinality automaton, which abstracts the overall behaviour of all the row automata and can be encoded by a set of linear constraints. We also provide a domain consistency filtering algorithm for the conjunction of lexicographic ordering constraints between adjacent rows ofMand (possibly different) automaton constraints on the rows. We evaluate the impact of our methods in terms of runtime and search effort on a large set of nurse rostering problem instances.
Fichier principal
Vignette du fichier
Constraints_automata_double_counting_final.pdf (424.99 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00758531 , version 1 (28-11-2012)

Identifiants

Citer

Nicolas Beldiceanu, Mats Carlsson, Pierre Flener, Justin Pearson. On Matrices, Automata, and Double Counting in Constraint Programming. Constraints, 2013, 18 (1), pp.108-140. ⟨10.1007/s10601-012-9134-y⟩. ⟨hal-00758531⟩
407 Consultations
347 Téléchargements

Altmetric

Partager

More