Optimal stopping for partially observed piecewise-deterministic Markov processes
Résumé
This paper deals with the optimal stopping problem under partial observation for piecewise-deterministic Markov processes. We first obtain a recursive formulation of the optimal filter process and derive the dynamic programming equation of the partially observed optimal stopping problem. Then, we propose a numerical method, based on the quantization of the discrete-time filter process and the inter-jump times, to approximate the value function and to compute an actual $\epsilon$-optimal stopping time. We prove the convergence of the algorithms and bound the rates of convergence.