A Dataset for StarCraft AI & an Example of Armies Clustering - Archive ouverte HAL
Communication Dans Un Congrès Année : 2012

A Dataset for StarCraft AI & an Example of Armies Clustering

Résumé

This paper advocates the exploration of the full state of recorded real-time strategy (RTS) games, by human or robotic players, to discover how to reason about tactics and strategy. We present a dataset of StarCraft games encompassing the most of the games' state (not only player's orders). We explain one of the possible usages of this dataset by clustering armies on their compositions. This reduction of armies compositions to mixtures of Gaussian allow for strategic reasoning at the level of the components. We evaluated this clustering method by predicting the outcomes of battles based on armies compositions' mixtures components
Fichier principal
Vignette du fichier
workshop.pdf (287.63 Ko) Télécharger le fichier
Vignette du fichier
Z_EC_knowing_ECnext.png (26.82 Ko) Télécharger le fichier
Vignette du fichier
PvP_small.png (109.62 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Format Figure, Image
Format Figure, Image
Loading...

Dates et versions

hal-00752893 , version 1 (16-11-2012)

Identifiants

Citer

Gabriel Synnaeve, Pierre Bessiere. A Dataset for StarCraft AI & an Example of Armies Clustering. Artificial Intelligence in Adversarial Real-Time Games 2012, Oct 2012, Palo Alto, United States. pp 25-30. ⟨hal-00752893⟩
509 Consultations
359 Téléchargements

Altmetric

Partager

More