A New Algorithm for Discrete Area of Convex Polygons with Rational Vertices - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2012

A New Algorithm for Discrete Area of Convex Polygons with Rational Vertices

Résumé

A new algorithm is presented, which computes the number of lattice points lying inside a convex plane polygon from the sequence of the rational coordinates of its vertices. It reduces the general case in a natural way to a fondamental one, namely a triangle with vertices of coordinates $\{(0;0),(n;0),(n;n\frac{a}{b})\}$, where $n$, $a$ and $b$ are positive natural integers. Then it evaluates the discrete area of such a triangle using the Klein polyhedron of slope $\frac{a}{b}$ and the Ostrowski representation of $n$ with the numeration scale of denominators of the convergents of the continued fraction expansion of $\frac{a}{b}$ .
Fichier principal
Vignette du fichier
HAL_counting.pdf (148.74 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00751492 , version 1 (13-11-2012)
hal-00751492 , version 2 (07-02-2013)

Identifiants

  • HAL Id : hal-00751492 , version 1

Citer

Henri-Alex Esbelin. A New Algorithm for Discrete Area of Convex Polygons with Rational Vertices. 2012. ⟨hal-00751492v1⟩
176 Consultations
241 Téléchargements

Partager

More