Adaptive Classifier Selection in Large-Scale Hierarchical Classification - Archive ouverte HAL
Communication Dans Un Congrès Année : 2012

Adaptive Classifier Selection in Large-Scale Hierarchical Classification

Résumé

Going beyond the traditional text classification, involving a few tens of classes, there has been a surge of interest in automatic document categorization in large taxonomies where the number of classes range from hundreds of thousands to millions. Due to the complex nature of the learning problem posed in such scenarios, one needs to adapt the conventional classification schemes to suit this domain. This paper presents a novel approach for classifier selection in large hierarchies, which is based on exploiting training data heterogeneity across the hierarchy. We also present a meta-learning framework for further flexibility in classifier selection. The experimental results demonstrate the applicability of our approach, which achieves accuracy comparable to the state-of-the-art and is also significantly faster for prediction.
Fichier principal
Vignette du fichier
Partalas-Babbar-Gaussier-Amblard-ICONIP2012.pdf (118.25 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00750771 , version 1 (12-11-2012)

Identifiants

Citer

Ioannis Partalas, Rohit Babbar, Éric Gaussier, Cécile Amblard. Adaptive Classifier Selection in Large-Scale Hierarchical Classification. ICONIP 2012 - International Conference on Neural Information Processing, Nov 2012, Doha, Qatar. pp.612-619, ⟨10.1007/978-3-642-34487-9_74⟩. ⟨hal-00750771⟩
217 Consultations
281 Téléchargements

Altmetric

Partager

More