
HAL Id: hal-00750771
https://hal.science/hal-00750771v1

Submitted on 12 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive Classifier Selection in Large-Scale Hierarchical
Classification

Ioannis Partalas, Rohit Babbar, Éric Gaussier, Cécile Amblard

To cite this version:
Ioannis Partalas, Rohit Babbar, Éric Gaussier, Cécile Amblard. Adaptive Classifier Selection in Large-
Scale Hierarchical Classification. ICONIP 2012 - International Conference on Neural Information
Processing, Nov 2012, Doha, Qatar. pp.612-619, �10.1007/978-3-642-34487-9_74�. �hal-00750771�

https://hal.science/hal-00750771v1
https://hal.archives-ouvertes.fr

Adaptive Classifier Selection in Large-Scale

Hierarchical Classification

Ioannis Partalas⋆, Rohit Babbar, Eric Gaussier, and Cecile Amblard

LIG, Université Joseph Fourier, Grenoble 1
Grenoble, cedex 9, 38041, France
firstname.lastname@imag.fr

Abstract. Going beyond the traditional text classification, involving a
few tens of classes, there has been a surge of interest in automatic doc-
ument categorization in large taxonomies where the number of classes
range from hundreds of thousands to millions. Due to the complex na-
ture of the learning problem posed in such scenarios, one needs to adapt
the conventional classification schemes to suit this domain. This pa-
per presents a novel approach for classifier selection in large hierarchies,
which is based on exploiting training data heterogeneity across the hier-
archy. We also present a meta-learning framework for further flexibility
in classifier selection. The experimental results demonstrate the appli-
cability of our approach, which achieves accuracy comparable to the
state-of-the-art and is also significantly faster for prediction.

Keywords: Hierarchical classification, classifier selection, meta-learning

1 Introduction

Many recent practical applications of text classification have the number of tar-
get classes as an added dimension to the complexity of the underlying learning
problem. Directory Mozilla and Wikipedia exemplify this research challenge in
the domain of text classification, where the number of target classes range from
hundreds of thousands to over a million. Due to the enormous effort involved
in manually classifying unseen data in such scenarios, automatic classification
has assumed significant importance. For large scale classification, an underlying
semantic structure, a rooted tree for instance, typically exists among the classes.
The taxonomy structure serves as useful prior information aimed at improv-
ing classification accuracy and speed. If no semantic structure exists among the
classes or is ignored if it exists, one needs to evaluate O(K) one-vs-all classifiers,
one for each of theK classes. This technique, also referred to as flat classification,
consequently leads to a significant slowdown in prediction performance.

In hierarchical classification, major challenges in obtaining higher classifi-
cation accuracy include: (i) error propagation, since the overall classification
mechanism cannot recover from classification error at top levels of the hierarchy,

⋆ I. Partalas and R. Babbar equally contributed to this work

2

(ii) data heterogeneity across levels in the hierarchy, and (iii) class size imbalance
between positive and negative examples for one-vs-all classification. Another im-
portant aspect for large scale hierarchical classification, which is also the main
focus of this work, is prediction speed. This factor has largely been ignored while
designing classification mechanisms in this domain, but is crucial for acceptable
behavior in many applications, such as large scale Question-Answering systems.

2 Related Work and Our Contributions

Various approaches have been proposed for hierarchical classification, which can
be broadly divided into one of the two techniques: (i) Big-bang approaches,
which train a single classifier for the entire hierarchy and hence are more suited
for relatively small-scale problems as in [3] where the number of classes are
limited to 1172, and (ii) Top-down approaches, in which the test document is
classified at the root and then iteratively following the most confident child class,
till leaf node is reached. In [5], an SVM classifier is deployed at each node of
the hierarchy, which is relatively slow for training and testing. Deep classification
technique [9] is slightly better in terms of accuracy but suffers from the limitation
that it needs to train a new classifier for every test document. Refined Experts [2]
employs top-down SVM classifiers which are augmented with a bottom-up pass
using validation set to correct false negatives. Classifier selection for hierarchical
classification on a smaller scale in protein function prediction has been studied in
[8]. A related study, with focus on empirical trade-offs of large scale hierarchical
classification, has been explored in [1].

This work presents a classification technique which exploits the properties
of the data, such as feature to example ratio and data imbalance between the
target class and rest of the classes, in a large scale hierarchy. Based on such
properties, our algorithm performs automatic classifier selection by choosing
either an SVM or a Naive Bayes classifier at the classification nodes of the
hierarchy. Additionally, this work formulates and solves a meta-learning problem
for dynamic classifier selection. Section 4 presents in detail the criteria which
determine the choice of classifiers.

3 Problem Setup

In single-label multi-class hierarchical classification, the training set can be rep-
resented by S = {(x(i), y(i))}Ni=1. In the context of text classification, x(i) ∈ X
denotes the vector representation of document i in the input space X ⊆ Rd.
Assuming that there are K classes denoted by the set Y = {1 . . .K}, the label
y(i) ∈ Y represents the class associated with the instance x(i). The hierarchy
in the form of rooted tree is given by G = (V , E) where V ⊇ Y denotes the set
of nodes of G, and E denotes the set of edges with parent-to-child orientation.
The leaves of the tree which usually forms the set of target classes is given by
Y = {u ∈ V : ∄v ∈ V , (u, v) ∈ E}.

3

In the above setup, given a new test instance x, the goal is to predict the
class ŷ. This is typically done by making a sequence of predictions iteratively in
a top-down fashion starting from the root until a leaf node is reached. At each
non-leaf node v ∈ V , a score fc(x) ∈ R is computed for each child c and the
child ĉ with the maximum score is predicted i.e. ĉ = argmax

c:(v,c)∈E

fc(x).

In addition to requiring accurate predictions, we also focus on prediction speed,
two seemingly contradicting design requirements for a machine learning algo-
rithm. To address the above conflicting requirements of high prediction accuracy
and faster prediction and training time, we focus on Support Vector Machine
(SVM) and Naive Bayes (NB) classifiers as base classifiers. SVM classifier is
known to have better accuracy but is slower to train and deploy for prediction.
NB classifier, on the other hand, is faster for training and prediction but is on
the lower side of the accuracy spectrum. In the next section, we present condi-
tions in large hierarchies, which determine the selection of classifiers to achieve
better run-time performance without sacrificing accuracy.

4 Classifier Selection in LSHC

In this section, we present two approaches to classifier selection that exploit
the data heterogeneity in large scale hierarchical classification. The first one,
referred to as static approach 1, is based on using the relation between number
of features and number of training examples for the classification problem at a
given node in the hierarchy. The second approach to classifier selection is based
on solving a meta-learning problem which includes further meta-features such
as test instance size and class imbalance in one-vs-all classification.

4.1 Static Approach to Classifier Selection

For a multi-class classification problem at node v of the hierarchy, let dv denote
the dimensionality of the feature space and nv denote the number of training
documents for which the root-to-leaf path goes through node v. Let their ratio
for node v in the hierarchy be denoted by rv, i.e. rv = dv

nv

.

As one traverses down from the root node towards the leaves, in large scale
hierarchies such as DMOZ, rv varies over a wide range of values. Due to large
number of classes corresponding to the leaf nodes, the number of training docu-
ments (nv) decrease much faster than the number of features (dv) for classifica-
tion nodes on root to leaf path. As a result, this ratio is much higher at hierarchy
levels close to the root as compared to its value for nodes at lower levels. Figure
1(a) shows the variation of average value of rv for DMOZ dataset when plotted
against the hierarchy levels. Each piece-wise linear curve in the plot corresponds
to the class size range of the multi-class problem. Two important properties of
the dataset, one of which follows from Figure 1(a), are:

1 called Adaptive Classifier Selection in our previous work [1]

4

1. The ratio rv increases towards the leaves;
2. Almost 97% of the multi-class classification problems involve 2-15 classes.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2 3 4 5

R
at

io

Level

of classes
2-15

15-30
31-45
>=46

(a) Ratio variation

 0

 2

 4

 6

 8

 10

 12

Level 1 Level 2 Level 3 Level 4 Level 5

A
cc

ur
ac

y
di

ff
er

en
ce

 (
%

)

(b) Accuracy differences

Fig. 1. 1(a)Variation in ratio of feature set size to training sample size with the hier-
archy level, and 1(b) Difference of SVM and NB accuracy, (SVM - NB), in % for each
hierarchy level. Level 1 corresponds to the root and level 5 to level leading to leaves.

The above observations imply that in order to achieve the goal of high accuracy
and faster run-time, one needs to exploit the wide variation in training data
properties. In this context, we next present the relevant results from statistical
learning theory which deal with accuracy measure of discriminative classifiers
(such as SVM) and generative classifiers (such as NB).

Let fG and fD represent the classifiers learned by fitting generative and
discriminative model respectively and fG,∞ and fD,∞ be their corresponding
asymptotic versions, i.e. functions learned when the sample size approaches in-
finity. Let ε(.) be the function representing the generalization error of its argu-
ment. For a classification problem in d-dimensional feature space with n training
examples, these results can be summarized as follows [6]:

1. ε(fD,∞) ≤ ε(fG,∞);
2. ε(fG) ≤ ε(fG,∞) + δ0 if n = Ω(ln(d));
3. ε(fD) ≤ ε(fD,∞) + δ′0 if n = Ω(d);

for arbitrary but fixed δ, δ′0 > 0; Ω(.) denotes the big Omega notation.

Informally, the above inequalities can be interpreted as follows:

1. The generalization performance of discriminative classifiers is better than
that of generative classifiers under asymptotic regime of operation.

2. The number of training examples required for discriminative classifier to
reach its asymptotic performance is at least linear in the number of features.

3. The number of training examples required for generative classifier to reach
its asymptotic performance is at least logarithmic in the number of features.

The above results show that even though SVM is a better classifier for nodes
close to the root, NB can be used for nodes in the lower levels of the hierarchy

5

due to its faster training and prediction time. Figure 1(b) confirms this intuition
further, showing that NB accuracy is much closer to that of SVM for lower levels
(4 and 5) than at higher levels (1 and 2). Consistently lower accuracy of NB for
all levels in the hierarchy can be attributed to the argument indexed 1 above.

In order to allow further flexibility in classifier selection and instead of fixing
NB classifier for the entire lower levels, we can use a threshold value τv for ratio
rv to choose the classifier at node v, such that

Classifier at node v =

{
Naive Bayes if rv ≥ τv
SVM otherwise

The thresholding strategy, even though a simplification of the three arguments
presented above, works well in practice, as shown in the experimental section 6.

4.2 Adaptive Hierarchical Classifier Selection

Using the classifier selection strategy introduced in the previous section, the
choice of a classifier at every node in the hierarchy becomes fixed for all test
instances. Further adaptivity can be achieved by enabling classifier selection
for each test instance separately. The rationale of incorporating an adaptive
selection mechanism is that classification models have different levels of expertise
in different parts of the feature space. For example, for a specific node in the
hierarchy, a NB classifier may be complementary to an SVM classifier. Thus, it
would be desirable to select NB in some test cases targeting to both predictive
accuracy and computational performance. The proposed method for hierarchical
classifier selection is based on the concept of meta-learning. One of the objectives
of meta-learning methods is to produce general and robust learning algorithms
[7].

In the context of hierarchical classification, the purpose of the meta-learning
framework is to select the best classifier for each node in the hierarchy as we tra-
verse it in a top-down manner. In order to do so, we need to define an appropriate

meta-learning problem. Let SV = {(x
(i)
V , y

(i)
V)}NV

i=1 be a validation set containing
examples of the initial classification problem and Ca, Cb be two classifiers that
have been trained for each multi-class problem in the hierarchy. For every ex-
ample in the validation set, we create meta-learning examples by traversing the
hierarchy top-down. For a specific node v and a validation example i, a meta-

learning example is defined by the tuple: x
(i,v)
m =< γv, rv, ubrv, szi > such that

the elements of the tuple are the meta-features of the meta-learning problem:

γv : number of children of node v.
rv : ratio of the number of features to number of training examples for node v.

ubrv : the unbalanced ratio of the classification problem at node v, calculated as
#examples of minority class
#examples of majority class

szi : the size of instance i. Different classification algorithms behave differently
according to the size of the instance and thus it would be desirable to adapt
to this phenomenon.

6

Next, we need to define the label space of the meta-learning problem. Dif-
ferent learning problems can be defined according to the characteristics of the
classifiers (prediction accuracy, training and testing time) and the objectives of
the hierarchical classification problem (accuracy, computational cost). For exam-
ple, if we assume that Ca ≺ Cb in terms of prediction accuracy and Ca ≻≻ Cb

in terms of computational cost, where ≺ denotes the natural preference relation,
then we set the following learning problem:

y(i,v)m =

{
Ca if Ca is correct
Cb otherwise

In this problem the objective is to identify regions where Ca complements Cb

while reducing the computational cost in cases where both classifiers have good
or bad prediction accuracy. Note that the definition of the meta-learning prob-
lem is flexible in order to allow different instantiations by considering different
and multiple classification schemes. For example, one may consider multiple clas-
sifiers and form a multi-label problem where more than one classifier could be
correct for an instance. In this case the method could be coupled with ensemble
techniques for acquiring a decision.

5 Experimental Setup

For the experiments we use the publicly available DMOZ data set from LSHTC2
2. The dataset, after preprocessing by stemming and stopword removal, appears
in the LibSVM format. Table 1 presents the important properties of the dataset.
Since the average number of labels per document is 1.02, we consider it as single-
label classification for our purpose. We use Liblinear [4] to train the models

Property Name Value

Total number of training examples 394,756
Size of the Overall Feature Space 594,158
Number of Target Classes (|Y|) 27,875
Number of Nodes in the Hierarchy (|V|) 35,449
Total number of multi-class classifiers 7,574

Table 1. Training Data Properties

for L2-regularized L2-loss support vector classification. The models are trained
for all 7,574 non-leaf nodes for One-Vs-All classification. For NB classifier, we
implement the standard multinomial NB using Laplace smoothing.

For producing the meta-learning training set we use a validation set (separate
from the training set for building the classifiers) containing 3000 examples. As

2 http://lshtc.iit.demokritos.gr

7

meta-learner, we use a decision tree based on C4.5 algorithm as it can provide
interpretable rules. The Weka machine learning library was used in this case
setting the confidence factor to 0.25, with reduced error pruning and without
Laplace smoothing, using 10-fold cross-validation.

6 Results and Analysis

Table 2 shows the different classification mechanisms and the metrics of interest
for the overall classifier, which include, (i) SVM classifier for the entire hierarchy
(SVM-TD), (ii) Static classifier selection strategy based on threshold value (SCS-
τ), (iii) adaptive hierarchical classifier selection method (AH-CS) for Ca =NB
and Cb=SVM, and (iv) NB classifier for the entire hierarchy (NB-TD). We first

Method Accuracy (%) Tr. Time (hours) Test Time (secs)

SVM-TD 35.58 35 20
SCS-τ , τ = 60 35.19 22 12
SCS-τ , τ = 30 34.68 12 5
AH-CS 35.66 35.25 4
NB-TD 22.22 0.25 0.5

Table 2. Trade-off between Prediction Accuracy in %, Total Training for entire dataset
in hours, and Average Test Time per Instance in seconds

notice that the best performing algorithm in terms of accuracy is AH-CS with
a slight difference over SVM-TD, while the gain in prediction speed is about 5
times. Note that in the case of AH-CS the training time of the models is the
sum of the training times of SVM-TD and NB-TD as we need to retain all the
models due to the instance-based nature of the method.

AH-CS selected 45.58% times NB models during the testing procedure. To
better understand the results of the proposed method we consider the contin-
gency matrix of the two classifiers for each level of the hierarchy. Noticeably, the
NB classifier corrects the errors of SVM in 6.8%, 6.4%, 6.6% and 6.7% of the
examples for the first 4 levels respectively. This shows that being able to identify
these cases can lead us to better performance both in accuracy and speed. We
also calculated the κ-statistic for each level which shows how diverse the clas-
sifiers are, getting 0.42, 0.45, 0.44 and 0.45 for the 4 levels respectively. κ = 1
means that the two classifiers are identical while κ = 0 indicates independent
classifiers. The results show that the classifiers are diverse across the hierarchy
and supports the rationale of using different classifiers for different cases. Note
that the achieved performance of our method is comparable to the best partic-
ipant (38.8%) in LSHTC for the DMOZ track. However, the objective of our
work does not coincide with the participants’ in the challenge since their major
focus is on accuracy related metrics. As a result, some of them may employ some
pre-processing steps to boost accuracy.

8

From rows 1 and 3 of table 2, the accuracy of the hierarchical classifier by
using static classifier selection is comparable to top-down SVM, while being four
times faster in prediction and three times faster to train. SCS-τ was computed
based on a uniform threshold value of τv = 60 and τv = 30, ∀v ∈ V . Increasing
the threshold value selects more SVM classifiers, leading to better accuracy but
slower training and test time, while decreasing it would have the opposite effect.

The gain in speed-up for test time is achieved as a result of more compact
models built by NB as compared to SVM from same the training data. All NB
models can be loaded in the physical memory for predictions. For SVM, the
models for only the top two levels can be loaded in physical memory.

7 Conclusions and Future Work

We presented a static and an adaptive classifier combination technique to build
large scale hierarchical classification systems. As a result, we not only achieve
accuracy comparable to state-of-the-art but also reduce the prediction time sig-
nificantly compared to the top-down SVM classifier. Further work includes the
consideration of more complex topologies such as directed acyclic graphs and
also allowing multiple labels.

8 Acknowledgments

This work was supported by the French National Research Agency (ANR) as
part of the project Class-Y (ANR-10-BLAN-02).

References

1. R. Babbar, I. Partalas, E. Gaussier, and C. Amblard. On empirical tradeoffs in
large scale hierarchical classification. In ACM CIKM, 2012.

2. P. N. Bennett and N. Nguyen. Refined experts: improving classification in large
taxonomies. In Int. ACM SIGIR Conference, pages 11–18, 2009.

3. L. Cai and T. Hofmann. Hierarchical document categorization with support vector
machines. In CIKM, pages 78–87. ACM, 2004.

4. R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A
library for large linear classification. JMLR, 9:1871–1874, 2008.

5. T.-Y. Liu, Y. Yang, H. Wan, H.-J. Zeng, Z. Chen, and W.-Y. Ma. Support vector
machines classification with a very large-scale taxonomy. SIGKDD Explor. Newsl.,
pages 36–43, 2005.

6. A. Y. Ng and M. I. Jordan. On discriminative vs. generative classifiers: A comparison
of logistic regression and naive bayes. In NIPS, pages 841–848, 2001.

7. T. Schaul and J. Schmidhuber. Metalearning. Scholarpedia, 5(6):4650, 2010.
8. A. Secker, M. N. Davies, A. A. Freitas, E. B. Clark, J. Timmis, and D. R. Flower.

Hierarchical classification of g-protein-coupled receptors with data-driven selection
of attributes and classifiers. Int. J. Data Min. Bioinformatics, pages 191–210, 2010.

9. G.-R. Xue, D. Xing, Q. Yang, and Y. Yu. Deep classification in large-scale text
hierarchies. In Int. ACM SIGIR Conference, pages 619–626, 2008.

