Small time heat kernel asymptotics at the cut locus on surfaces of revolution
Résumé
In this paper we investigate the small time heat kernel asymptotics on the cut locus on the class of two-spheres of revolution, which is the simplest class of 2-dimensional Riemannian manifolds different from the sphere with non trivial cut-conjugate locus. We determine the degeneracy of the exponential map near a cut-conjugate point and present the consequences of this result to the small time heat kernel asymptotics at this point. These results give a first example where the minimal degeneration of the asymptotic expansion at the cut locus is attained.