Solving multiclass support vector machines with LaRank - Archive ouverte HAL
Communication Dans Un Congrès Année : 2007

Solving multiclass support vector machines with LaRank

Résumé

Optimization algorithms for large margin multiclass recognizers are often too costly to handle ambitious problems with structured outputs and exponential numbers of classes. Optimization algorithms that rely on the full gradient are not effective because, unlike the solution, the gradient is not sparse and is very large. The LaRank algorithm sidesteps this difficulty by relying on a randomized exploration inspired by the perceptron algorithm. We show that this approach is competitive with gradient based optimizers on simple multiclass ...
Fichier principal
Vignette du fichier
bordes07icml.pdf (384.18 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00750277 , version 1 (09-11-2012)

Identifiants

Citer

Antoine Bordes, Léon Bottou, Patrick Gallinari, Jason Weston. Solving multiclass support vector machines with LaRank. ICML 2007 - 24th International Conference on Machine Learning, Jun 2007, Corvallis, United States. pp.89--96, ⟨10.1145/1273496.1273508⟩. ⟨hal-00750277⟩
341 Consultations
1012 Téléchargements

Altmetric

Partager

More