
HAL Id: hal-00750277
https://hal.science/hal-00750277v1

Submitted on 9 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving multiclass support vector machines with LaRank
Antoine Bordes, Léon Bottou, Patrick Gallinari, Jason Weston

To cite this version:
Antoine Bordes, Léon Bottou, Patrick Gallinari, Jason Weston. Solving multiclass support vector
machines with LaRank. ICML 2007 - 24th International Conference on Machine Learning, Jun 2007,
Corvallis, United States. pp.89–96, �10.1145/1273496.1273508�. �hal-00750277�

https://hal.science/hal-00750277v1
https://hal.archives-ouvertes.fr

Solving MultiClass Support Vector Machines with LaRank

Antoine Bordes†∗ bordes@poleia.lip6.fr
Léon Bottou† leon@bottou.org
Patrick Gallinari∗ gallinari@poleia.lip6.fr
Jason Weston† jaseweston@gmail.com

(†) NEC Laboratories America, Inc., 4 Independence Way, Princeton, NJ08540, USA.
(∗) LIP6, Université de Paris 6, 104 Avenue du Pdt Kennedy, 75016 Paris, France

Abstract

Optimization algorithms for large margin
multiclass recognizers are often too costly to
handle ambitious problems with structured
outputs and exponential numbers of classes.
Optimization algorithms that rely on the full
gradient are not effective because, unlike the
solution, the gradient is not sparse and is
very large. The LaRank algorithm sidesteps
this difficulty by relying on a randomized
exploration inspired by the perceptron algo-
rithm. We show that this approach is com-
petitive with gradient based optimizers on
simple multiclass problems. Furthermore, a
single LaRank pass over the training exam-
ples delivers test error rates that are nearly
as good as those of the final solution.

1. Introduction

Much has been written about the recognition of multi-
ple classes using large margin kernel machines such as
support vector machines (SVMs). The most widely
used approaches combine multiple binary classifiers
separately trained using either the one-versus-all or
one-versus-one scheme (e.g. Hsu & Lin, 2002). Alter-
native proposals (Weston & Watkins, 1998; Crammer
& Singer, 2001) reformulate the large margin prob-
lem to directly address the multiclass problem. These
algorithms are more expensive because they must si-
multaneously handle all the support vectors associated
with different inter-class boundaries. Rigorous exper-
iments (Hsu & Lin, 2002; Rifkin & Klautau, 2004)
suggest that this higher cost does not translate into
higher generalization performance.

Appearing in Proceedings of the 24 th International Confer-
ence on Machine Learning, Corvallis, OR, 2007. Copyright
2007 by the author(s)/owner(s).

The picture changes when one considers learning sys-
tems that predict structured outputs (e.g. Bakır et al.,
2007). Instead of predicting a class label y for each
pattern x, structured output systems produce com-
plex discrete outputs such as a sequences, trees, or
graphs. Since these potential outputs can be enu-
merated (in theory), these systems can be viewed as
multiclass problems with a number of classes growing
exponentially with the characteristic size of the out-
put. Dealing with so many classes in a large margin
classifier would be infeasible without smart factoriza-
tions that leverage the specific structure of the outputs
(Taskar et al., 2005; Tsochantaridis et al., 2005). This
is best achieved using a direct multiclass formulation
because the factorization of the output space implies
that all the classes are handled simultaneously. It is
therefore important to reduce the computational cost
of multiclass SVMs with a potentially large number of
classes.

MCSVM Crammer and Singer (2001) propose a
multiclass formulation that we call partial ranking.
The dual cost is a function of a n × k matrix of La-
grange coefficients where n is the number of examples
and k the number of classes. Each iteration of the
MCSVM algorithm maximizes the restriction of the
dual cost to a single row of the coefficient matrix. Suc-
cessive rows are selected using the gradient of the cost
function. Unlike the coefficients matrix, the gradient
is not sparse. This approach is not feasible when the
number of classes k grows exponentially, because the
gradient becomes too large.

SVMstruct Tsochantaridis et al. (2005) essentially
use the same partial ranking formulation for the SVM-
struct system. The clever cutting plane algorithm en-
sures convergence but only requires to store and com-
pute a small part of the gradient. This crucial differ-
ence makes SVMstruct suitable for structured output
problems with a large number of classes.

Solving MultiClass Support Vector Machines with LaRank

Kernel Perceptrons Online algorithms inspired by
the perceptron (Collins, 2002; Crammer & Singer,
2003) can be interpreted as the successive solution of
optimization subproblems restricted to coefficients as-
sociated with the current training example. There is
no need to represent the gradient. The random or-
dering of the training examples drives the successive
optimizations. Perceptrons provide surprisingly strong
theoretical guarantees (Graepel et al., 2000). They run
very quickly but provide inferior generalization perfor-
mances in practice.

LaRank This paper proposes LaRank, a stochastic
learning algorithm that combines partial gradient in-
formation with the randomization arising from the se-
quence of training examples.

• LaRank uses gradients as sparingly as SVMstruct
and yet runs considerably faster. In fact, LaRank
reaches an equivalent accuracy faster than algo-
rithms that use the full gradient information.

• LaRank generalizes better than perceptron-based
algorithms. In fact, LaRank provides the perfor-
mance of SVMstruct or MCSVM because it solves
the same optimization problem.

• LaRank achieves nearly optimal test error rates
after a single pass over the randomly reordered
training set. Therefore, LaRank offers the practi-
cality of an online algorithm.

This paper first reviews and discusses the multiclass
formulation of Crammer and Singer. Then it presents
the LaRank algorithm, discusses its convergence, and
reports experimental results on well known multiclass
problems.

2. Multiclass Support Vector Machines

This section describes the partial ranking formulation
of multiclass SVMs (Crammer & Singer, 2001). The
presentation first follows (Tsochantaridis et al., 2005)
then introduces a new parametrization of the dual pro-
gram.

2.1. Partial Ranking

We want to learn a function f that maps patterns
x ∈ X to discrete class labels y ∈ Y. We introduce
a discriminant function S(x, y) ∈ R that measures the
correctness of the association between pattern x and
class label y. The optimal class label is then

f(x) = arg max
y∈Y

S(x, y) . (1)

We assume that the discriminant function has the form

S(x, y) = 〈w,Φ(x, y)〉

where Φ(x, y) maps the pair (x, y) into a suitable fea-
ture space endowed with the dot product 〈·, ·〉. As
usual with kernel machines, the feature mapping func-
tion Φ is implicitly defined by the specification of a
joint kernel function

K(x, y, x̄, ȳ) = 〈Φ(x, y),Φ(x̄, ȳ)〉 . (2)

Consider training patterns x1 . . . xn ∈ X and their
class labels y1 . . . yn ∈ Y. For each pattern xi, we want
to make sure that the score S(xi, yi) of the correct as-
sociation is greater than the scores S(xi, y), y 6= yi, of
the incorrect associations. This amounts to enforcing
a partial order relationship on the elements of X ×Y.
This partial ranking can be expressed by constraints

∀i = 1 . . . n ∀y 6= yi 〈w, δΦi(yi, y)〉 ≥ 1

where δΦi(y, ȳ) stands for Φ(xi, y)− Φ(xi, ȳ).

Following the standard SVM derivation, we introduce
slack variables ξi to account for the potential violation
of the constraints and optimize a combination of the
norm of w and of the size of the slack variables.

min
w

1
2
〈w,w〉+ C

n∑
i=1

ξi (3)

subject to

{
∀i ξi ≥ 0
∀i ∀y 6= yi 〈w, δΦi(yi, y)〉 ≥ 1− ξi

2.2. Dual Programs

The usual derivation leads to solving the following
equivalent dual problem (Crammer & Singer, 2001;
Tsochantaridis et al., 2005):

max
α

X
i,y 6=yi

αy
i −

1

2

X
i,y 6=yi
j,ȳ 6=yj

αy
i αȳ

j 〈δΦi(yi, y), δΦj(yj , ȳ)〉

subject to

8<:
∀i ∀y 6= yi αy

i ≥ 0

∀i
X
y 6=yi

αy
i ≤ C

(4)

This problem has n(k− 1) variables αy
i , y 6= yi corre-

sponding to the constraints of (3). Once we have the
solution, the discriminant function is

S(x, y) =
∑

i,ȳ 6=yi

αȳ
i 〈δΦi(yi, ȳ),Φ(x, y)〉

This dual problem can be considerably simplified by
reparametrizing it with nk variables βy

i defined as

βy
i =

−αy

i if y 6= yi∑
ȳ 6=yi

αȳ
i otherwise (5)

Note that only the βyi

i can be positive. Substituting in
(4), and taking into account the relation

∑
y βy

i = 0,

Solving MultiClass Support Vector Machines with LaRank

leads to a much simpler expression for the dual prob-
lem (the δΦi(. . .) have disappeared.)

max
β

X
i

βyi
i −

1

2

X
i,j,y,ȳ

βy
i βȳ

j 〈Φ(xi, y), Φ(xj , ȳ)〉

subject to

8><>:
∀i ∀y 6= yi βy

i ≤ 0
∀i βyi

i ≤ C

∀i
X

y

βy
i = 0

(6)

The discriminant function then becomes

S(x, y) =
∑
i,ȳ

βȳ
i 〈Φ(xi, ȳ),Φ(x, y)〉

2.3. Kernel Factorization

In practice, smart factorizations of the joint kernel (2)
are crucial to reduce the memory required to store or
cache the kernel values. This paper focuses on simple
multiclass problems whose kernel function (2) takes
the form

〈Φ(x, y),Φ(x̄, ȳ)〉 = k(x, x̄) δ(y, ȳ)

where k(x, x̄) is a kernel defined on the patterns, and
where δ(y, ȳ) is 1 if y = ȳ and 0 otherwise.

The dual problem (6) then becomes

max
β

X
i

βyi
i −

1

2

X
i,j

X
y

βy
i βy

j k(xi, xj)

subject to

8<:
∀i ∀y βy

i ≤ Cδ(y, yi)

∀i
X

y

βy
i = 0

(7)

and the discriminant function becomes

S(x, y) =
∑

i

βy
i k(xi, x)

When there are only two classes, this reduces to the
standard SVM solution (without equality constraint.)

Structured output learning systems (Tsochantaridis
et al., 2005) call for much more sophisticated factor-
izations of the joint kernel. For the sake of simplicity,
we describe the LaRank algorithm in the context of the
multiclass problem (7) which is the focus of this pa-
per. Dealing with the general problem (6), or handling
the variable margins suggested by Tsochantaridis et al.
(2005), only requires minor changes.

3. Optimization Algorithm

During the execution of the optimization algorithm, we
call support vectors all pairs (xi, y) whose associated
coefficient βy

i is non zero; we call support patterns all
patterns xi that appear in a support vector.

The LaRank algorithm stores the following data:

• The set S of the current support vectors.

• The coefficients βy
i associated with the support

vectors (xi, y) ∈ S. This describes the solution
since all the other β coefficients are zero.

• The derivatives gi(y) of the dual objective func-
tion with respect to the coefficients βy

i associated
with the support vectors (xi, y) ∈ S.

gi(y) = δ(y, yi)−
∑

j βy
j k(xi, xj)

= δ(y, yi)− S(xi, y)
(8)

Note that we do not store or even compute the
remaining coefficients of the gradient. In general,
these missing derivatives are not zero because the
gradient is not sparse.

A naive implementation could simply precompute all
the kernel values k(xi, xj). This would be a waste of
processing time because the location of the optimum
depends only on the fraction of the kernel matrix that
involves support patterns. Our code computes kernel
values on demand and caches them in sets of the form

E(y, j) = { k(xi, xj) such that (xi, y) ∈ S }.

Although this cache stores several copies of the same
kernel values, caching individual kernel values has a
higher overhead.

3.1. Elementary Step

Problem (7) lends itself to a simple iterative algo-
rithm whose elementary steps are inspired by the well
known sequential minimal optimization (SMO) algo-
rithm (Platt, 1999).

Algorithm 1 SmoStep(i, y+, y−):

1: Retrieve or compute gi(y+).
2: Retrieve or compute gi(y−).

3: Let λu =
gi(y+)−gi(y−)

2 k(xi,xi)

4: Let λ = max
˘

0, min(λu, C δ(y+, yi)− β
y+
i)

¯
5: Update β

y+
i ← β

y+
i + λ and β

y−
i ← β

y−
i − λ

6: Update S according to whether β
y+
i and β

y−
i are zero.

7: Update gradients:
∀j s.t. (xj , y+) ∈ S, gj(y+)← gj(y+) + λ k(xi, xj)
∀j s.t. (xj , y−) ∈ S, gj(y−)← gj(y−)− λ k(xi, xj)

Each iteration starts with the selection of one pat-
tern xi and two classes y+ and y−. The elementary
step modifies the coefficients β

y+
i and β

y−
i by opposite

amounts,
β

y+
i ←− β

y+
i + λ

β
y−
i ←− β

y−
i − λ

(9)

where λ ≥ 0 maximizes the dual objective function
(7) subject to the constraints. This optimal value is

Solving MultiClass Support Vector Machines with LaRank

easily computed by first calculating the unconstrained
optimum

λu =
gi(y+)− gi(y−)

2 k(xi, xi)
(10)

and then enforcing the constraints

λ = max
{

0, min(λu, C δ(y+, yi)− β
y+
i)

}
(11)

Finally the stored derivatives gj(y) are updated to re-
flect the coefficient update. This is summarized in
algorithm 1.

3.2. Step Selection Strategies

Popular SVM solvers based on SMO select successive
steps by choosing the pair of coefficients that defines
the feasible search direction with the highest gradient.
We cannot use this strategy because we have chosen
to store only a small fraction of the gradient.

Stochastic algorithms inspired by the perceptron per-
form quite well by successively updating coefficients
determined by randomly picking training patterns.
For instance, in a multiclass context, Taskar (2004, sec-
tion 6.1) iterates over the randomly ordered patterns:
for each pattern xi, he computes the scores S(xi, y) for
all classes and runs SmoStep on the two most violat-
ing classes, that is, the classes that define the feasible
search direction with the highest gradient.

In the context of binary classification, Bordes and Bot-
tou (2005) observe that such perceptron-inspired up-
dates lead to a slow optimization of the dual because
the coefficients corresponding to the few support vec-
tors are not updated often enough. They suggest to
alternatively update the coefficient corresponding to a
fresh random example and the coefficient correspond-
ing to an example randomly chosen among the cur-
rent support vectors. The related LaSVM algorithm
(Bordes et al., 2005) alternates steps exploiting a fresh
random training example and steps exploiting current
support vectors selected using the gradient.

We now extend this idea to the multiclass formulation.
Since the multiclass problem has both support vectors
and support patterns, we define three ways to select a
triple (i, y+, y−) for the elementary SmoStep.

Algorithm 2 ProcessNew(xi):

1: if xi is a support pattern then exit.
2: y+ ← yi.
3: y− ← arg miny∈Y gi(y)

4: Perform SmoStep(i, y+, y−)

• ProcessNew (algorithm 2) operates on a pat-
tern xi that is not a support pattern. It chooses
the classes y+ and y− that define the feasible di-
rection with the highest gradient. Since all the

Algorithm 3 ProcessOld:

1: Randomly pick a support pattern xi.
2: y+ ← arg maxy∈Y gi(y) subject to βy

i < C δ(y, yi)
3: y− ← arg miny∈Y gi(y)

4: Perform SmoStep(i, y+, y−)

Algorithm 4 Optimize:

1: Randomly pick a support pattern xi.
2: Let Yi = { y ∈ Y such that (xi, y) ∈ S }
3: y+ ← arg maxy∈Yi

gi(y) subject to βy
i < C δ(y, yi)

4: y− ← arg miny∈Yi
gi(y)

5: Perform SmoStep(i, y+, y−)

βy
i are zero, y+ is always yi. Choosing of y−

consists of finding arg maxy S(xi, y) since equa-
tion (8) holds.

• ProcessOld (algorithm 3) randomly picks a sup-
port pattern xi. It chooses the classes y+ and y−
that define the feasible direction with the high-
est gradient. The determination of y+ mostly in-
volves labels y such that βy

i < 0, for which the
corresponding derivatives gi(y) are known. The
determination of y− again consists of computing
arg maxy S(xi, y).

• Optimize (algorithm 4) resembles ProcessOld
but picks the classes y+ and y− among those that
correspond to existing support vectors (xi, y+) and
(xi, y−). Using the gradient is fast because the
relevant derivatives are already known and their
number is moderate.

The ProcessNew operation is closely related to the
perceptron algorithm. It can be interpreted as a
stochastic gradient update for the minimization of the
generalized margin loss (LeCun et al., 2007, §2.2.3),
with a step size adjusted according to the curvature of
the dual (Hildreth, 1957). Crammer and Singer (2003)
use a very similar approach for the MIRA algorithm.

3.3. Adaptive Schedule

Previous works (Bordes & Bottou, 2005; Bordes et al.,
2005) simply alternate two step selection strategies ac-
cording to a fixed schedule. They also report results
suggesting that the optimal schedule is in fact data-
dependent.

We would like to select at each iteration an opera-
tion that causes a large increase of the dual in a small
amount of time. For each operation type, LaRank
maintains a running estimate of the average ratio of
the dual increase over the duration. Running times are
measured; dual increases are derived from the value of
λ computed during the elementary step.

Each iteration of the LaRank algorithm (algorithm 5)

Solving MultiClass Support Vector Machines with LaRank

Algorithm 5 LaRank:

1: S ← ∅.
2: rOptimize, rProcessOld, rProcessNew ← 1.
3: loop
4: Randomly reorder the training examples.
5: k ←− 1.
6: while k ≤ n do
7: Pick operation s with odds proportional to rs.
8: if s = Optimize then
9: Perform Optimize.

10: else if s = ProcessOld then
11: Perform ProcessOld.
12: else
13: Perform ProcessNew(xk).
14: k ← k + 1.
15: end if
16: rs ← µ dual increase

duration
+ (1− µ) rs.

17: end while

18: end loop

randomly selects which operation to perform with a
probability proportional to these estimates. Our im-
plementation uses µ = 0.05. In order to facilitate tim-
ing, we treat sequences of ten Optimize as a single
atomic operation.

3.4. Correctness and Complexity

Let ν2 = maxi{k(xi, xi)} and let κ, τ, η be small posi-
tive tolerances. We assume that the algorithm imple-
mentation enforces the following properties:

• SmoStep exits when gi(y+)− gi(y−) ≤ τ .

• Optimize and ProcessOld chooses y+ among
the y that satisfy βy

i ≤ C δ(y, yi)− κ.

• LaRank makes sure that every operation has
probability greater than η to be selected at each
iteration (see algorithm 5).

We refer to this as the (κ, τ, η)-algorithm.

Theorem With probability 1, the (κ, τ, η)-algorithm
reaches a κτ -approximate solution of problem (7), with
no more than max{ 2ν2nC

τ2 , 2nC
κτ } successful SmoSteps.

Proof Sketch The convergence is a consequence from

theorem 18 from (Bordes et al., 2005). To apply this theo-

rem, we must prove that the directions defined by (9) form

a witness family for the polytope defined by the constraints

of problem (7). This is the case because this polytope is

a product of n polytopes for which we can apply propo-

sition 7 from (Bordes et al., 2005). The number of iter-

ations is then bounded using a technique similar to that

of (Tsochantaridis et al., 2005). The complete proof will

be given in an extended version of this paper. �

The bound on the number of iterations is also a bound
on the number of support vectors. It is linear in the
number of examples and does not depend on the pos-

sibly large number of classes.

3.5. Stopping

Algorithm 5 does not specify a criterion for stopping
its outer loop. Excellent results are obtained by per-
forming just one or two outer loop iterations (epochs).
We use the name LaRank×1 to indicate that we per-
form a single epoch, that is to say, a single pass over
the randomly ordered training examples.

Other stopping criteria include exploiting the duality
gap (Schölkopf & Smola, 2002, §10.1.1) and monitor-
ing the performance measured on a validation set. We
use the name LaRankGap to indicate that we iterate
algorithm 5 until the difference between the primal
cost (3) and the dual cost (7) becomes smaller than
C. However, computing the duality gap can become
quite expensive.

4. Experiments

This section report experiments carried out on vari-
ous multiclass pattern recognition problems. Although
our approach is partly motivated by structured output
problems, this work focuses on well understood mul-
ticlass tasks in order best characterize the algorithm
behavior.

4.1. Experimental Setup

Experiments were carried out on four datasets briefly
described in table 1. The LETTER and USPS datasets
are available from the UCI repository.1 The MNIST
dataset2 is a well known handwritten digit recognition
benchmark. The INEX dataset contains scientific ar-
ticles from 18 journals and proceedings of the IEEE.
We use a flat TF/IDF feature space (see Denoyer &
Gallinari, 2006 for further details).

Table 1 also lists our choices for the parameter C and
for the kernels k(x, x̄). These choices were made on the
basis of past experience. We use the same parameters
for all algorithms because we mostly compare algo-
rithms that optimize the same criterion. The kernel
cache size was 500MB for all experiments.

4.2. Comparing Optimizers

Table 2 (top half) compares three optimization algo-
rithms for the same dual cost (7).

• MCSVM (Crammer & Singer, 2001) uses the full
gradient and therefore cannot be easily extended
to handle structured output problems. We have
used the MCSVM implementation distributed by
the authors.

1http://www.ics.uci.edu/∼mlearn/databases.
2http://yann.lecun.com/exdb/mnist.

Solving MultiClass Support Vector Machines with LaRank

Table 1. Datasets used for the experiments.

Train Ex. Test Ex. Classes Features C k(x, x̄)

LETTER 16000 4000 26 16 10 e−0.025‖x−x̄‖2

USPS 7291 2007 10 256 10 e−0.025‖x−x̄‖2

MNIST 60000 10000 10 780 1000 e−0.005‖x−x̄‖2

INEX 6053 6054 18 167295 100 x · x̄

Table 2. Compared test error rates and training times.

LETTER USPS MNIST INEX

MCSVM Test error (%) 2.42 4.24 1.44 26.26
(stores the full gradient) Dual 5548 537 3718 235204

Training time (sec.) 1200 60 25000 520
Kernels (×106) 241 51.2 6908 32.9

SVMstruct Test error (%) 2.40 4.38 1.40 26.25
(stores partial gradient) Dual 5495 528 3730 235631

Training time (sec.) 23000 6300 265000 14500

Kernels (×106) 2083 1063.3 158076 n/a†

LaRankGap Test error (%) 2.40 4.38 1.44 26.25
(stores partial gradient) Dual 5462 518 3718 235183

Training time (sec.) 2900 175 82000 1050
Kernels (×106) 156 13.7 4769 19.3

LaRank×1 Test error (%) 2.80 4.25 1.41 27.20
(online) Dual 5226 503 3608 214224

Training time (sec.) 940 85 30000 300
Kernels (×106) 55 9.4 399 17.2

† Not applicable because SVMstruct bypasses the cache when using linear kernels.

LETTER USPS

MNIST INEX

Figure 1. Evolution of the test error as a function of the number of kernel calculations

Solving MultiClass Support Vector Machines with LaRank

• SVMstruct (Tsochantaridis et al., 2005) targets
structured output problems and therefore uses
only a small fraction of the gradient. We have
used the implementation distributed by the au-
thors. The authors warn that this implementation
has not been thoroughly optimized.

• LaRankGap iterates algorithm 5 until the duality
gap becomes smaller than parameter C. This al-
gorithm only stores a small fraction of the gradi-
ent, comparable to that used by SVMstruct. We
have implemented LaRank using an interpreted
scripting language with a specialized C function
for algorithm 1 (SmoStep).

Both SVMstruct and LaRankGap use small subsets
of the gradient coefficients. Although these subsets
have similar size, LaRankGap avoids the training time
penalty experienced by SVMstruct.

Both SVMstruct and LaRank make heavy use of ker-
nel values involving two support patterns. In con-
trast, MCSVM updates the complete gradient vector
after each step and therefore uses the kernel matrix
rows corresponding to support patterns. On our rel-
atively small problems, this stronger memory require-
ment is more than compensated by the lower overhead
of MCSVM’s simpler cache structure.

4.3. Comparing Online Learning Algorithms

Table 2 (bottom half) also reports the results obtained
with a single LaRank epoch (LaRank×1). This sin-
gle pass over the training examples is sufficient to
nearly reach the optimal performance. This result
is understandable because (i) online perceptrons offer
strong theoretical guarantees after a single pass over
the training examples, and (ii) LaRank drives the opti-
mization process by replicating the randomization that
happens in the perceptron.

For each dataset, figure 1 shows the evolution of the
test error with respect to the number of kernel cal-
culations. The point marked LaRank×1 corresponds
to running a single LaRank epoch. The point marked
LaRankGap corresponds to using the duality gap stop-
ping criterion as explained in section 4.2. Figure 1
also reports results obtained with two popular online
algorithms:

• The points marked AvgPerceptron×1 and
AvgPerceptron×10 respectively correspond to
performing one and ten epochs of the average
perceptron algorithm (Freund & Schapire, 1998;
Collins, 2002). Multiple epochs of the averaged
perceptron are very effective when the necessary
kernel values fit in the cache (first row). Training
time increases considerably when this is not the
case (second row.)

Figure 2. Impact of the LaRank operations (USPS dataset).

• The point marked MIRA corresponds to the online
multiclass algorithm proposed by Crammer and
Singer (2003). We have used the implementation
provided by the authors as part of the MCSVM
package. This algorithm computes more kernel
values than AvgPerceptron×1 because its solution
contains more support patterns. Its performance
seems sensitive to the choice of kernel: Crammer
and Singer (2003) report substantially better re-
sults using the same code but different kernels.

These results indicate that performing single LaRank
epoch is an attractive online learning algorithm.
Although LaRank×1 usually runs slower than
AvgPerceptron×1 or MIRA, it provides better and
more predictable generalization performance.

4.4. Comparing Optimization Strategies

Figure 2 shows the error rates and kernel calculations
achieved when one restricts the set of operations cho-
sen by algorithm 5. These results were obtained after
a single pass on the USPS dataset.

As expected, using only the ProcessNew operation
performs like MIRA. The average perceptron requires
significantly less kernel calculations because its solu-
tion is much more sparse. However, it looses this ini-
tial sparsity when one performs several epochs (see
figure 1.)

Enabling ProcessOld and Optimize significantly re-
duces the test error. The best test error is achieved
when all operations are enabled. The number of ker-
nel calculations is also reduced because ProcessOld
and Optimize often eliminate support patterns.

4.5. Comparing ArgMax Calculations

The previous experiments measure the computational
cost using training time and number of kernel calcula-
tions. Certain structured output problems use costly

Solving MultiClass Support Vector Machines with LaRank

Table 3. Numbers of arg max (in thousands).

LETTER USPS MNIST INEX

AvgPerceptron×1 16 7 60 6
AvgPerceptron×10 160 73 600 60

LaRank×1 190 25 200 28
LaRankGap 550 86 2020 73

SVMstruct 141 56 559 78

algorithms to find the class with the best score (1).
The cost of this arg max calculation is partly related
to the required number of new kernel values.

The average perceptron (and MIRA) performs one such
arg max calculation for each example it processes. In
contrast, LaRank performs one arg max calculation
when processing a new example with ProcessNew,
and also when running ProcessOld.

Table 3 compares the number of arg max calculations
for various algorithms and datasets.3 The SVMstruct
optimizer performs very well with this metric. The
AvgPerceptron and LaRank are very competitive on a
single epoch and become more costly when performing
many epochs. One epoch is sufficient to reach good
performance with LaRank. This is not the case for the
AvgPerceptron.

5. Conclusion

We have presented a large margin multiclass algo-
rithm that uses gradients as sparingly as SVMstruct
without experiencing the same training time penalty.
LaRank can be considered an online algorithm because
it nearly reaches its optimal performance in a single
pass over the training examples. Under these condi-
tions, LaRank achieves test error rates that are com-
petitive with those of the full optimization, and signif-
icantly better than those achieved by perceptrons.

Acknowledgments

Nicolas Usunier helped proving the theorem bound. Part of
this work was funded by NSF grant CCR-0325463. Antoine
Bordes was also supported by the DGA and by the Network
of Excellence IST–2002–506778 PASCAL.

References

Bakır, G., Hofmann, T., Schölkopf, B., Smola, A. J.,
Taskar, B., & Vishwanathan, S. V. N. (Eds.). (2007).
Predicting structured outputs. MIT Press. in press.

Bordes, A., & Bottou, L. (2005). The Huller: a simple and
efficient online SVM. Machine Learning: ECML 2005
(pp. 505–512). Springer Verlag. LNAI 3720.

3The letter results in table 3 are outliers because the
letter kernel runs as fast as the kernel cache. Since
LaRank depends on timings, it often runs ProcessOld
when a simple Optimize would have be sufficient.

Bordes, A., Ertekin, S., Weston, J., & Bottou, L. (2005).
Fast kernel classifiers with online and active learning.
Journal of Machine Learning Research, 6, 1579–1619.

Collins, M. (2002). Discriminative training methods for
hidden markov models: theory and experiments with
perceptron algorithms. EMNLP ’02: Proceedings of the
ACL-02 conference on Empirical methods in natural lan-
guage processing (pp. 1–8). Morristown, NJ: Association
for Computational Linguistics.

Crammer, K., & Singer, Y. (2001). On the algorithmic im-
plementation of multiclass kernel-based vector machines.
Journal of Machine Learning Research, 2, 265–292.

Crammer, K., & Singer, Y. (2003). Ultraconservative on-
line algorithms for multiclass problems. Journal of Ma-
chine Learning Research, 3, 951–991.

Denoyer, L., & Gallinari, P. (2006). The XML docu-
ment mining challenge. Advances in XML Information
Retrieval and Evaluation, 5th International Workshop
of the Initiative for the Evaluation of XML Retrieval,
INEX 2006. Schloß Dagsthul, Germany.

Freund, Y., & Schapire, R. E. (1998). Large margin classi-
fication using the perceptron algorithm. Machine Learn-
ing: Proceedings of the Fifteenth International Confer-
ence. San Francisco, CA: Morgan Kaufmann.

Graepel, T., Herbrich, R., & Williamson, R. C. (2000).
From margin to sparsity. In Advances in neural infor-
mation processing systems, vol. 13, 210–216. MIT Press.

Hildreth, C. (1957). A quadratic programming procedure.
Naval Research Logistics Quarterly, 4, 79–85. Erratum,
ibid. p361.

Hsu, C.-W., & Lin, C.-J. (2002). A comparison of methods
for multi-class support vector machines. IEEE Transac-
tions on Neural Networks, 13, 415–425.

LeCun, Y., Chopra, S., Hadsell, R., HuangFu, J., & Ran-
zato, M. (2007). A tutorial on energy-based learning. In
(Bakır et al., 2007), 192–241. in press.

Platt, J. (1999). Fast training of support vector machines
using sequential minimal optimization. Advances in Ker-
nel Methods – Support Vector Learning (pp. 185–208).
MIT Press.

Rifkin, R. M., & Klautau, A. (2004). In defense of one-vs-
all classification. Journal of Machine Learning Research,
5, 101–141.

Schölkopf, B., & Smola, A. J. (2002). Learning with ker-
nels. MIT Press.

Taskar, B. (2004). Learning structured prediction models:
A large margin approach. Doctoral dissertation, Stan-
ford University.

Taskar, B., Chatalbashev, V., Koller, D., & Guestrin, C.
(2005). Learning structured prediction models: a large
margin approach. International Conference on Machine
Learning (ICML) (pp. 896–903).

Tsochantaridis, I., Joachims, T., Hofmann, T., & Altun,
Y. (2005). Large margin methods for structured and
interdependent output variables. Journal of Machine
Learning Research, 6, 1453–1484.

Weston, J., & Watkins, C. (1998). Multi-class support vec-
tor machines (Technical Report CSD-TR-98-04). De-
partment of Computer Science, Royal Holloway, Univer-
sity of London, Egham, UK.

