Non-parametric estimation of the coefficients of ergodic diffusion processes based on high-frequency data - Archive ouverte HAL
Chapitre D'ouvrage Année : 2012

Non-parametric estimation of the coefficients of ergodic diffusion processes based on high-frequency data

Résumé

The content of this chapter is directly inspired by Comte, Genon-Catalot, and Rozenholc (2006; 2007). We consider non-parametric estimation of the drift and diffusion coefficients of a one-dimensional diffusion process. The main assumption on the diffusion model is that it is ergodic and geometrically β- mixing. The sample path is assumed to be discretely observed with a small regular sampling interval ∆. The estimation method that we develop is based on a penalized mean square approach. This point of view is fully investigated for regression models in Comte and Rozenholc (2002, 2004). We adapt it to discretized diffusion models.
Fichier principal
Vignette du fichier
SemStatBook_359-399.pdf (568.96 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00748939 , version 1 (06-11-2012)

Identifiants

  • HAL Id : hal-00748939 , version 1

Citer

Fabienne Comte, Valentine Genon-Catalot, Yves Rozenholc. Non-parametric estimation of the coefficients of ergodic diffusion processes based on high-frequency data. M. Kessler, A. Lindner, M. Sorensen. Statistical Methods for Stochastic Differential Equations, Chapman & Hall/CRC Monographs on Statistics & Applied Probability, pp.341-381, 2012, SemStat series. ⟨hal-00748939⟩
181 Consultations
268 Téléchargements

Partager

More