ASIP for martingales in 2-smooth Banach spaces. Applications to stationary processes - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2012

ASIP for martingales in 2-smooth Banach spaces. Applications to stationary processes

Résumé

We prove the almost sure invariance principle for martingales with stationary ergodic differences taking values in a separable $2$-smooth Banach space (for instance a Hilbert space). A compact law of the iterated logarithm is established in the case of stationary differences of \emph{reverse} martingales. Then, we deduce the almost sure invariance principle for stationary processes under the Hannan condition; and a compact law of the iterated logarithm for stationary processes arising from non-invertible dynamical systems. Those results for stationary processes are new, even in the real valued case. We also obtain the Marcinkiewicz-Zygmund strong law of large numbers for stationary processes with values in some smooth Banach spaces.
Fichier principal
Vignette du fichier
cunybernoulli.pdf (371.61 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00745651 , version 1 (26-10-2012)
hal-00745651 , version 2 (12-11-2012)
hal-00745651 , version 3 (14-11-2012)

Identifiants

  • HAL Id : hal-00745651 , version 1

Citer

Christophe Cuny. ASIP for martingales in 2-smooth Banach spaces. Applications to stationary processes. 2012. ⟨hal-00745651v1⟩
155 Consultations
152 Téléchargements

Partager

More