Large Time Behavior of Periodic Viscosity Solutions for Uniformly Parabolic Integro-Differential Equations - Archive ouverte HAL Access content directly
Journal Articles Calc. Var. Partial Differential Equations Year : 2014

Large Time Behavior of Periodic Viscosity Solutions for Uniformly Parabolic Integro-Differential Equations

Abstract

In this paper, we study the large time behavior of solutions of a class of parabolic fully nonlinear integro-differential equations in a periodic setting. In order to do so, we first solve the ergodic problem}(or cell problem), i.e. we construct solutions of the form $\lambda t + v(x)$. We then prove that solutions of the Cauchy problem look like those specific solutions as time goes to infinity. We face two key difficulties to carry out this classical program: (i) the fact that we handle the case of ''mixed operators'' for which the required ellipticity comes from a combination of the properties of the local and nonlocal terms and (ii) the treatment of the superlinear case (in the gradient variable). Lipschitz estimates previously proved by the authors (2012) and Strong Maximum principles proved by the third author (2012) play a crucial role in the analysis.
Fichier principal
Vignette du fichier
bcci-ltb-submitted.pdf (242.3 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00743751 , version 1 (19-10-2012)

Identifiers

Cite

Guy Barles, Emmanuel Chasseigne, Adina Ciomaga, Cyril Imbert. Large Time Behavior of Periodic Viscosity Solutions for Uniformly Parabolic Integro-Differential Equations. Calc. Var. Partial Differential Equations, 2014, 50 (1-2), pp.283-304. ⟨10.1007/s00526-013-0636-2⟩. ⟨hal-00743751⟩
294 View
217 Download

Altmetric

Share

Gmail Facebook X LinkedIn More