On the Maximal Sum of Exponents of Runs in a String
Abstract
A run is an inclusion maximal occurrence in a string (as a subinterval) of a repetition v with a period p such that 2p ≤ |v|. The exponent of a run is defined as |v|/p and is ≥ 2. We show new bounds on the maximal sum of exponents of runs in a string of length n. Our upper bound of 4.1 n is better than the best previously known proven bound of 5.6 n by Crochemore & Ilie (2008). The lower bound of 2.035 n, obtained using a family of binary words, contradicts the conjecture of Kolpakov & Kucherov (1999) that the maximal sum of exponents of runs in a string of length n is smaller than 2n.
Fichier principal
On_the_maximal_sum_of_exponents_of_runs_in_a_string.pdf (116.39 Ko)
Télécharger le fichier
Origin : Files produced by the author(s)
Loading...