Empirical central limit theorems for ergodic automorphisms of the torus - Archive ouverte HAL
Article Dans Une Revue ALEA : Latin American Journal of Probability and Mathematical Statistics Année : 2013

Empirical central limit theorems for ergodic automorphisms of the torus

Résumé

Let T be an ergodic automorphism of the d-dimensional torus T^d , and f be a continuous function from T^d to R . On the probability space T^d equipped with the Lebesgue-Haar measure, we prove the weak convergence of the sequential empirical process of the sequence (f ° T^ i )i≥1 under some condition on the modulus of continuity of f . The proofs are based on new limit theorems and new inequalities for non-adapted sequences, and on new estimates of the conditional expectations of f with respect to a natural ltration.
Fichier principal
Vignette du fichier
ineqtorus8oct.pdf (308.97 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00741466 , version 1 (12-10-2012)

Identifiants

  • HAL Id : hal-00741466 , version 1

Citer

Jérôme Dedecker, Florence Merlevède, Françoise Pene. Empirical central limit theorems for ergodic automorphisms of the torus. ALEA : Latin American Journal of Probability and Mathematical Statistics, 2013, 10 (2), pp.731-766. ⟨hal-00741466⟩
132 Consultations
136 Téléchargements

Partager

More