Experimental estimations of viscoelastic properties of multilayer damped plates in broad-band frequency range
Résumé
Regarding lightweighting structures for aeronautics, automotive or construction applications, the level of performance of solutions proposed in terms of damping and isolation is fundamental. Hence multilayered plate appears as an interesting answer if damping performances are properly optimized. In this paper, a novel modal analysis method (Ege et al, JSV 325 (4-5), 2009) is used to identify viscoelastic properties (loss factors, Young's modulus) of "polyethylene thermoplastic / aluminum" bilayer plates. The thermoplastic is chosen for its high loss factors and relative low mass. The experimental method consists in a high-resolution technique (ESPRIT algorithm) which allows precise estimations of the viscoelastic properties even in frequency domains with high modal overlap (high damping or modal density). Experimental loss factors estimated from impact hammer excitations on the free-free plates highly corresponds with two theoretical estimations. In the first model (Guyader & Lesueur, JSV 58(1), 1978) the calculation is based on multilayered plates equations and use wave propagation analysis ; in the second one (Laulagnet & Guyader, JASA 96(1), 1994) the thickness deformation solving Navier's equations is allowed. Results on several plates with several thicknesses of thermoplastics are given and compared with the models, demonstrating the validity of the approach.
Origine | Fichiers produits par l'(les) auteur(s) |
---|