On empirical distribution function of high-dimensional Gaussian vector components with an application to multiple testing - Archive ouverte HAL
Article Dans Une Revue Bernoulli Année : 2016

On empirical distribution function of high-dimensional Gaussian vector components with an application to multiple testing

Résumé

This paper introduces a new framework to study the asymptotical behavior of the empirical distribution function (e.d.f.) of Gaussian vector components, whose correlation matrix $\Gamma^{(m)}$ is dimension-dependent. Hence, by contrast with the existing literature, the vector is not assumed to be stationary. Rather, we make a ''vanishing second order" assumption ensuring that the covariance matrix $\Gamma^{(m)}$ is not too far from the identity matrix, while the behavior of the e.d.f. is affected by $\Gamma^{(m)}$ only through the sequence $\gamma_m=m^{-2} \sum_{i\neq j} \Gamma_{i,j}^{(m)}$, as $m$ grows to infinity. This result recovers some of the previous results for stationary long-range dependencies while it also applies to various, high-dimensional, non-stationary frameworks, for which the most correlated variables are not necessarily next to each other. Finally, we present an application of this work to the multiple testing problem, which was the initial statistical motivation for developing such a methodology.
Fichier principal
Vignette du fichier
DR2016_published.pdf (327.08 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-00739749 , version 1 (08-10-2012)
hal-00739749 , version 2 (03-05-2013)
hal-00739749 , version 3 (28-12-2022)

Identifiants

Citer

Sylvain Delattre, Etienne Roquain. On empirical distribution function of high-dimensional Gaussian vector components with an application to multiple testing. Bernoulli, 2016, 22 (1), pp.302-324. ⟨10.3150/14-BEJ659⟩. ⟨hal-00739749v3⟩
555 Consultations
356 Téléchargements

Altmetric

Partager

More