Anomaly Extraction in Backbone Networks Using Association Rules - Archive ouverte HAL
Article Dans Une Revue IEEE/ACM Transactions on Networking Année : 2012

Anomaly Extraction in Backbone Networks Using Association Rules

Résumé

Anomaly extraction refers to automatically finding, in a large set of flows observed during an anomalous time interval, the flows associated with the anomalous event(s). It is important for root-cause analysis, network forensics, attack mitigation, and anomaly modeling. In this paper, we use meta-data provided by several histogram-based detectors to identify suspicious flows, and then apply association rule mining to find and summarize anomalous flows. Using rich traffic data from a backbone network, we show that our technique effectively finds the flows associated with the anomalous event(s) in all studied cases. In addition, it triggers a very small number of false positives, on average between 2 and 8.5, which exhibit specific patterns and can be trivially sorted out by an administrator. Our anomaly extraction method significantly reduces the work-hours needed for analyzing alarms, making anomaly detection systems more practical.
Fichier principal
Vignette du fichier
06161622.pdf (1.39 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00737886 , version 1 (21-11-2012)

Identifiants

Citer

Daniela Brauckhoff, Xenofontas Dimitropoulos, Arno Wagner, Kavé Salamatian. Anomaly Extraction in Backbone Networks Using Association Rules. IEEE/ACM Transactions on Networking, 2012, 20 (6), pp.1788-1799. ⟨10.1109/TNET.2012.2187306⟩. ⟨hal-00737886⟩
159 Consultations
874 Téléchargements

Altmetric

Partager

More