Optimal transportation with an oscillation-type cost: the one-dimensional case - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2012

Optimal transportation with an oscillation-type cost: the one-dimensional case

Résumé

The main result of this paper is the existence of an optimal transport map $T$ between two given measures $\mu$ and $\nu$, for a cost which considers the maximal oscillation of $T$ at scale $\delta$, given by $\omega_\delta(T):=\sup_{|x-y|<\delta}|T(x)-T(y)|$. The minimization of this criterion finds applications in the field of privacy-respectful data transmission. The existence proof unfortunately only works in dimension one and is based on some monotonicity considerations.
Fichier principal
Vignette du fichier
LesPegSan_oscillation.pdf (237.33 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00737433 , version 1 (01-10-2012)

Identifiants

Citer

Didier Lesesvre, Paul Pegon, Filippo Santambrogio. Optimal transportation with an oscillation-type cost: the one-dimensional case. 2012. ⟨hal-00737433⟩
184 Consultations
101 Téléchargements

Altmetric

Partager

More