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OPTIMAL TRANSPORTATION WITH AN OSCILLATION-TYPE

COST : THE ONE-DIMENSIONAL CASE

DIDIER LESESVRE, PAUL PEGON, FILIPPO SANTAMBROGIO

Abstract. The main result of this paper is the existence of an optimal trans-
port map T between two given measures µ and ν, for a cost which considers the
maximal oscillation of T at scale δ, given by ωδ(T ) := sup|x−y|<δ |T (x)−T (y)|.

The minimization of this criterion finds applications in the field of privacy-
respectful data transmission. The existence proof unfortunately only works in
dimension one and is based on some monotonicity considerations.

MSC 2010 Primary: 49J45, Secondary: 49J05, 46N10
Keywords : Monge-Kantorovich, Optimal Transportation, modulus of conti-

nuity, monotone transports, privacy respect

Contents

1. Introduction and motivations 1
2. The original problem and its Kantorovich formulation 4
2.1. Kantorovich formulation 4
2.2. Existence of an optimal transport plan 5
3. Existence of an optimal transport map 5
3.1. Preliminary remarks and definitions 6
3.2. The proof 7
4. A counter-example 11
5. Technical extensions 12
5.1. Optimal plans and maps in the non-compact case 12
5.2. Wider definition of ωδ 13
References 14

1. Introduction and motivations

Optimal transport problems represent the mathematization of a very natural
applied question, which is the following: given the initial density of a certain amount
of mass, and the target density that we want to realize, which is the best possible
way to displace the mass so as to guarantee a minimal cost?

Based on an idea dating back to G. Monge (see [9]), this is formalized through
a map T : X → Y with the property T#µ = ν, where µ and ν, probabilities
on X and Y , respectively, are the two given distribution of mass, represented by
two measures (the case of densities is retrieved when the measures are absolutely
continuous). The constraint T#µ = ν, expressed in terms of the image measure (we
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recall that T#µ is a measure defined through T#µ(A) = µ(T−1(A))), stands for the
fact that T must “rearrange” the distribution µ into the new fixed one, ν.

The typical criterion is based on the minimization of the average displacement

min

∫

|T (x)− x|p dµ(x)

(we stick here to the euclidean case, where X and Y are subsets of Rd and T (x)−x
makes perfect sense, even if much has been said about other cases, in metric spaces,
for instance). More generally, the criteria that have been studied are of the form
∫

c(x, T (x)) dµ(x) for various cost-functions c, adapted to the different applica-
tions. For this wide class of problems, which is now known to be linked to many
other branches of mathematics, from fluid mechanics, to mathematical economy,
differential geometry, functional inequalities and probability, an alternative, con-
vex, formulation is available thanks to the ideas of L. Kantorovich (see [4]). The
existence of an optimal T also passes first through this extended formulation.

These classical problems in optimal transport theory are now a very lively do-
main in pure and applied mathematics and most of them have already been solved
or understood. Yet, it appears from some branches of applications, that a new
generation of transport problems should be investigated, namely the minimization,
over the same class of transport maps T , of more general costs, also depending
on the differentiability or continuity properties of T . Let us think to optimization
problems of the form

min

∫

|T (x)− x|p dµ(x) +

∫

|∇T (x)|2dx,

where the goal is to find a good transport map, where its regularity also comes into
play. Many variants of the form

∫

L(x, T (x),∇T (x))dx could be considered, and
they are already used in some applications, for instance in image processing (see
[10]) or shape analysis. Numerical studies on these issues have been performed, and
not only in the last few years (see [1], which anticipates a lot the current interest
for this kind of problems in applied mathematics).

The difficulties in studying this higher-order problem are somehow different than
in the usual Kantorovich theory: here the existence of an optimal T is typically
easier to establish than in the usual theory, but much less is known about the
characterization of the optimal maps. For instance, once we suppose that at least
one map T providing a finite value to the energy exists, it is not difficult to prove by
standard compactness arguments in Sobolev spaces that a minimizer exists. Yet,
finding it or studying its characterization appears to be more difficult, and [6] gives
for instance a very partial answer, in the one dimensional and uniform case where
X ⊂ R and µ is the Lebesgue measure over X .

Other criteria to minimize can easily appear to be meaningful, based for instance
on the continuity of T instead of its derivatives. If minimizing the Lipschitz constant
Lip(T ) is easy to understand (and a straightforward application of Ascoli-Arzelà
Theorem provides existence of an optimal T ), we want here to present a more tricky
functional. For a fixed positive value δ one can consider the following quantity

ωδ(T ) = sup
|x−x′|<δ

|T (x)− T (x′)| ;

which is merely the modulus of continuity of T evaluated at δ. Minimizing ωδ(T )
means finding a transport map T which is as continuous as possible, at scale δ.
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It is interesting to see that this very minimization problem

min {ωδ(T ) | T#µ = ν}

comes from a precise applied question which has been raised by the computer science
community, in the framework of privacy-preserving protocols in telecommunications
(see [8]).

Let us try to explain why this precise minimization should play a role in this
setting, even if the reader could easily imagine other possible applications of this
optimization problem. Suppose that a high number of users are connected through
their mobile phone to a service whose goal is to tell them whether their friends (from
a social network list, for instance) are located or not within a certain fixed distance
from them. To do so, all mobile phones periodically communicate their position to
a common server which computes their distances and provides the users with the
desired information. Yet, for privacy reasons, we do not want the server to know
the position of each user, even if we want it to be able to compute their distances,
which could seem difficult to realize. What is currently done to overcome this
difficulty is that a third object, an external server, randomly chooses an isometry
of the space (i.e. , a rotation R of the earth surface) and communicates it to the
mobile phones of the users, but not to the server. The users then communicate their
rotated position R(x) instead of their position x to the server, which is therefore
able to compute their mutual distances, without exactly knowing their positions.

However, this is not satisfactory yet, since if the number of users is large enough,
the distance-calculator server could see which are the densest regions1 where most
of the users are concentrated. It is not difficult to guess that these regions are more
likely to correspond to Manhattan, Paris, Tokyo, and other strongly urbanized
points of the Earth, and once one can reconstruct the position of these poles he can
also reconstruct all the positions. This is a matter of non-uniform density, and this
problem would not exist if the population on Earth was uniformly spread. Hence,
an alternative idea could be the following: find a map T (instead of R) transforming
the given population density µ into a uniform density ν; it is clear that T cannot
be an isometry, but one can look for the map T which gives a minimal distance
distortion. We cite for instance the work [3] where the distortion is minimized in
terms - roughly speaking - of the local bi-Lipschitz constant.

But the true model which is of interest for the privacy community is really the
minimization of the ωδ modulus of continuity. Actually, if δ stands for the threshold
distance the users are interested in, and we set L = ωδ(T ), we get |T (x)− T (y)| >
L ⇒ |x − y| ≥ δ. This means that all distances that are computed by the server
to be larger than L correspond for sure to original distances larger than δ. The
ambiguity stays true only in case the measured distance is smaller than L, but in
such a case it is still possible to compute in a privacy-respectful way the distances,
but with a more costly procedure (see [7], where cryptographic techniques are used
to this aim). This finally means that it would be suitable to minimize L.

1Notice that it is not always necessary that an external server chooses a same random isometry
for all the users, since an alternative way of proceeding is that each pair of users (actually their
mobile devices) secretly agree on a randomly chosen isometry of the space that is not known to
the server. In this case the server only knows mutual distances between users instead of their
“rotated” positions, but this will be enough for him to make some clusters and compare to the
distribution of the users in the world, which is well-known, see [2], and the final result would be
the same.
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It is also clear that, from the application point of view, it is not really necessary
to find the optimal map T , but any map with a small value for ωδ(T ) would be fine.
But exactly for this purposes it is worthwhile to study the minimization problem
from a theoretical point of view, so as to find out possible general features of optimal
maps (provided they exist) which could suggest how to produce “good” maps T .

This is why the present paper investigates, as a very first step in this research
direction, the existence of an optimal map. This problem is quite hard since impos-
ing continuity only at scale δ is not enough to give compactness for the minimizing
sequences.

On the positive side, as in the most classical traditions in transport problems,
there exists a Kantorovich version of this problem, which is presented in this paper
and existence of a minimizer for this extended problem is then proven. But the
usual strategy consisting in proving that the Kantorovich minimizer actually derives
from a map T is not easy to implement.

A solution to this problem is proposed in dimension one, where it is possible
to add an extra property: it is proven that an optimal map exists, and that it is
piecewise monotone, where the number of monotonicity changes is at most of the
order of 1/δ.

In order to arrive to this result, the paper is organised as follows: Section 2
presents the key features of the problem we want to solve (the minimization among
transport maps T ) and of its Kantorovich relaxation, including the existence of
a minimizer for this relaxed problem; Section 3 slowly gets to the existence of
an optimal transport map starting from the optimal transport plan and applying
suitable constructions; Section 4 gives an easy but interesting example where the
optimal map is not monotone, but only piecewise monotone; finally, we describe
in Section 5 how to handle some mathematical extensions of the problem that we
preferred not to introduce from the beginning so as to make the paper more readable
and to concentrate on the main ideas without too many technicalities.

2. The original problem and its Kantorovich formulation

Let δ be a positive real number and µ, ν two probability measures on R
d. Let

us denote Ω and Ω′ the supports Supp(µ) and Supp(ν) of the two measures, and
suppose for simplicity that they are compact (see Section 5 for the adaptations to a
non-compact setting). All the functions that we consider will be defined on Ω (this
will also be discussed in Section 5). We are interested in minimizing the functional

(Mδ) ωδ : T 7−→ sup
|x− x′| < δ

x, x′ ∈ Supp(µ)

|T (x)− T (x′)|

where T lies in T(µ, ν) := {T ∈ B(Ω;Ω′) : T#µ = ν}, the set of transport maps

from µ to ν. The quantity ωδ is merely the modulus of continuity of T evaluated
at δ.

2.1. Kantorovich formulation. Inspired from the Kantorovich reformulation of
the initial Monge problem, we can consider the minimization on a wider class of
objects : probability measures on the product space, or transport plans, instead
of transport maps. This should guarantee easier existence results and leads us to
study the relaxed functional

(Kδ) ωK
δ : γ 7−→ (γ ⊗ γ)− ess sup {|y − y′| : (x, y), (x′, y′) ∈ Ω× Ω′, |x− x′| < δ}



OPTIMAL TRANSPORT WITH OSCILLATION COSTS 5

where γ lies in Π(µ, ν) := {γ ∈ P(Ω× Ω′) : (π1)#γ = µ, (π2)#γ = ν}. This map
can be expressed as

ωδ(γ) = ‖f‖L∞(γ⊗γ) ,

where

f : (a, b) ∈ (Ω× Ω′)× (Ω× Ω′) 7−→ |π2(b)− π2(a)|1B(0,δ)(π1(b)− π1(a)).

Since the above function f is lower semicontinuous, looking at its supremum on
any set gives the same result as the supremum on the closure of the same set; in
particular, its essential supremum coincides with the supremum on the support of
the measure, hence we have

ωK
δ (γ) = sup {|y − y′| : (x, y), (x′, y′) ∈ Supp(γ), |x− x′| < δ} .

In the following, all the topological notions on P(Ω), where Ω is compact, will re-
late to the weak-⋆ topology with the identification to the dual of functions vanishing
at infinity, i.e. C0(Ω)

′ which equals C(Ω)′ for Ω is compact.
The entire paper is devoted to the existence proof of an optimal transport map

when µ has no atom and Ω ⊂ R. Further effort should still be made to handle the
multi-dimensional case.

2.2. Existence of an optimal transport plan.

Theorem 1. Given two probabilities µ, ν on Ω and Ω′ respectively, and δ > 0,
there exists a transport plan γ ∈ Π(µ, ν) minimizing the cost ωK

δ .

Proof. Let us take a minimizing sequence γn ∈ Π(µ, ν) and set Γn = Supp(γn).
Up to subsequences, we can suppose weak-⋆ convergence γn ⇀ γ and Hausdorff
convergence Γn → Γ. It is clear that we have Supp(γ) ⊂ Γ and hence

ωK
δ (γ) ≤ sup {|y − y′| : (x, y), (x′, y′) ∈ Γ, |x− x′| < δ} .

Now, take two arbitrary points (x, y), (x′, y′) ∈ Γ with |x − x′| < δ. By Haus-
dorff convergence, it is possible to build two sequences (xn, yn), (x

′
n, y

′
n) ∈ Γn with

(xn, yn) → (x, y) and (x′n, y
′
n) → (x′, y′). In particular, for n large enough, they

satisfy |xn − x′n| < δ and hence |yn − y′n| ≤ ωK
δ (γn), which yields |y − y′| ≤

lim infn ω
K
δ (γn). Passing to the supremum over the points of Γ we get ωK

δ (γ) ≤
lim infn ω

K
δ (γn). This semicontinuity proves that γ is optimal. �

3. Existence of an optimal transport map

In the following, we denote by K the minimal value of ωK
δ on Π(µ, ν), by γ⋆ an

arbitrary minimizer for this relaxed problem and by Γ its support :

K := min
Π(µ,ν)

ωK
δ , γ⋆ ∈ argmin

Π(µ,ν)

ωK
δ , Γ := Supp γ⋆.

Notice that the projection π1(Γ) of the support on the first factor of Ω×Ω′ equals
Supp(µ), i.e. Ω.

We shall now state the main theorem of this paper:

Theorem 2. Let Ω,Ω′ be compact set in R, µ ∈ P(Ω) and ν ∈ P(Ω′) two given
probabilites on them. If µ has no atom, there exists an optimal transport map
T ∈ T(µ, ν) for the cost ωδ, where

ωδ : T 7−→ sup
|x− x′| < δ
x, x′ ∈ Ω

|T (x)− T (x′)| .
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3.1. Preliminary remarks and definitions. We denote by f and g the two
functions defined on π1(Γ) = Ω delimiting the convex hull along y of Γ i.e.

f(x) := inf {y : (x, y) ∈ Γ} ,

g(x) := sup {y : (x, y) ∈ Γ} .

Remark. These functions are Borel measurable and in particular f is lower semi-
continuous and g is upper semicontinuous. Actually, since Γ is compact, for every
x there is y such that (x, y) ∈ Γ and f(x) = y. If one takes xn → x and yn = f(xn)
then there is a subsequence ynk

→ y = lim infn yn. Since Γ is closed, we get
(x, y) ∈ Γ. Then one has f(x) ≤ y and semicontinuity is proven. Upper semiconti-
nuity for g is completely analogous.

The strip [f, g] := {(x, y) ∈ Ω× R : f(x) ≤ y ≤ g(x)} satisfies the following prop-
erties :

Γ ⊂ [f, g](Inc)

∀(x, y), (x′, y′) ∈ [f, g], (|x− x′| < δ =⇒ |y − y′| ≤ K)(Opt)

Definition 1. A strip [φ, ψ] where φ, ψ : Ω → R is said optimal if it satisfies the
optimality property (Opt), and admissible if it satisfies both the inclusion (Inc)
and optimality (Opt) properties.

The functions f and g have not a priori extra regularity properties than simply
being lower and upper semicontinuous. The aim is to replace them with more reg-
ular ones, defining another admissible strip. Once such a nicer strip is constructed,
we will prove that it contains the graph of a transport map, thus completing the
proof, because the optimality property guarantees that any transport plan living
in the strip has minimal cost.

Since [f, g] is optimal, we have |f(x)− g(x′)| ≤ K whenever |x− x′| < δ, yield-
ing

f(x) ≥ inf
|x−x′|<δ

g(x′)−K,(3.1a)

g(x) ≤ sup
|x−x′|<δ

f(x′) +K,(3.1b)

motivating the next definition.

Definition 2. For every function φ : Ω → R, we define its ↑ and ↓ transforms2 as
follows :

φ↓(x) = sup
y∈Ω,|y−x|<δ

φ(y),(3.2a)

φ↑(x) = inf
y∈Ω,|y−x|<δ

φ(y).(3.2b)

By definition of the transforms, the strips [f, f↑+K] and [g↓−K, g] are optimal.
Moreover, rewriting (3.1), one gets g↓−K ≤ f ≤ g ≤ f↑+K, meaning that f↑ and
g↓ are respectively the largest and smallest functions such that the strips [f, f↑+K]
and [g↓ − K, g] are optimal. In particular, they also keep satisfying the inclusion
property. This is stated in the next proposition.

2These transforms also depend on the domain Ω which is used to define the sup and the inf,
but we will omit this dependence, which will be implicit throughout the paper, thus avoiding
writing as φ↑,Ω and similar heavy notations.
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Proposition 3. For all optimal strip [φ, ψ] where φ, ψ : Ω → R, φ↑ and φ↓ are
respectively the largest and smallest functions such that [φ, φ↑ +K] and [ψ↓ −K,ψ]
are optimal. Therefore, if [φ, ψ] is admissible, then these strips are also admissible.

So far, we have shown that the admissible strip [f, g] can be replaced by [f, f↑+
K], which is still admissible. Then it can be replaced by [f↑↓, f↑ + K], since
(f↑ + K)↓ − K = f↑↓, thus enlarging the strip twice. One could wonder if this
construction should go on, and the answer is negative, as a consequence of the
following proposition.

Proposition 4. For all φ : Ω → R,

φ↑↓↑ = φ↑,

φ↓↑↓ = φ↓.

Proof. Since φ↑↓ is the lowest possible, φ↑↓ ≤ φ, hence φ↑↓↑ ≤ φ↑ by monotonicity
of the transforms. As for the converse inequality, ∀y ∈ B(x, δ),

φ↑↓(y)
.
= sup

z∈B(y,δ)

φ↑(z) ≥ φ↑(x)

so that by taking the infimum over B(x, δ),

φ↑↓↑(x) ≥ φ↑(x). �

This shows that the strip [f↑↓, f↑ +K], which is admissible, cannot be enlarged
without losing the optimality condition. We will see that the ↑ and ↓ transforms
have regularizing properties which justify the replacement of [f, g] by [f↑↓, f↑+K].

3.2. The proof. We shall now study further properties of the transform operations
defined previously and prove a few lemmas which will be useful in the final proof
at the end of this section.

Definition 3. Let φ, ψ : Ω → R. We say that (φ, ψ) is a conjugate pair if φ↑ = ψ
et ψ↓ = φ.

Remark. By Proposition 4, (φ↑↓, φ↑) is a conjugate pair.

Proposition 5. Let φ : Ω → R a Borel function. Then, φ↑ and φ↓ are regulated
functions3, hence continuous outside a countable set. Moreover they are respectively
lower and upper semicontinuous.

Proof. Since φ is measurable and bounded, it can be expressed as the uniform limit
of simple functions φn. Now let us see how the ↑ and ↓ transforms act on simple
functions. Let φ a simple function

φ =

N
∑

i=1

αi1Ai
where α1 < · · · < αN .

We shall calculate its ↑ transform φ↑. Since its value at some point x is defined by
the infimum of φ on B(x, δ), φ↑ is equal to α1 at any point which is distant from

3A linear combination of characteristic functions of measurable sets will be called a simple
function, and if these sets are intervals we call it a step function. A regulated function is by
definition a uniform limit of step functions. This notion coincides, by the way, with that of
functions having left and right-sided limits at every point. Note that we work here with functions
defined on Ω, where intervals are traces on Ω of intervals of R. Therefore, regulated functions on
Ω are exactly restrictions on Ω of regulated functions on R.
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A1 by less than δ, i.e. on the set Ω ∩ A↑
1 where A↑

1 := A1 + B(0, δ). It is a disjoint
reunion of intervals of length at least 2δ, hence the reunion is finite. A similar

reasoning tells us that (φ↑)−1(α2) is equal to the trace of A↑
2 := (A2 +B(0, δ)) \A↑

1

on Ω, and more generally that φ↑ equals αk on Ω ∩ A↑
k where

A↑
k
:= (Ak +B(0, δ)) \

(

k−1
⋃

i=1

A↑
i

)

which is a finite and disjoint reunion of intervals. Furthermore, since φ is supposed
to be the limit of (φn)n and by monotonicity of the ↑ transform, if ‖φn − φ‖∞ ≤ ε
then

φ− ε ≤ φn ≤ φ+ ε hence (φ− ε)↑ = φ↑ − ε ≤ φ↑n ≤ (φ+ ε)↑ = φ↑ + ε.

It proves that φ↑ is the uniform limit of φ↑n, which are step functions : it is a
regulated function. It is a classical issue to see that the set of discontinuity points
of any regulated function is at most countable. The same result naturally holds for
the ↓ transform of φ.

Now we shall prove that φ↑ is upper semicontinuous. Consider a sequence (xn)n
converging to x. Since φ↑ = infB( · ,δ) φ, if a ∈ B(x, δ) then for n large enough

|a− xn| < δ, i.e. a ∈ B(xn, δ), and φ↑(xn) ≤ φ(a). This implies that limφ↑(xn) ≤
φ(a) for all a ∈ B(x, δ), yielding

limφ↑(xn) ≤ inf
a∈B(x,δ)

φ(a)
.
= φ↑(x)

which proves the upper semicontinuity of φ↑. Since φ↓ = −(−φ)↑, we get lower
semicontinuity for φ↓. �

In the following, all intervals, possibly given in the form |a, b| where | is either [
or ], will be intervals of Ω.

Lemma 6. Let φ, ψ : Ω → R conjugate step functions, ψ = φ↑ being expressed as
∑

j=1,...,N

αj1Ij

where the Ij ’s are intervals partitioning Ω and sorted in increasing order, and the
αj are consecutively distinct. If (αk−1, αk, αk+1) is a triple such that αk−1 > αk,
αk+1 > αk (we say that Ik is a floor), then the distance between Ik+1 and Ik−1,
defined as inf Ik+1 − sup Ik−1 (which could be larger than the measure of Ik, or
even of its diameter, if Ω is disconnected) is at least 2δ. The symmetric result on
ceilings of φ holds.

Proof. By contradiction, assume that the distance between Ik+1 and Ik−1 is smaller
than 2δ. Pick a point x in Ik and a ∈ Ω such that d(a, x) < δ. The ball B(a, δ)
contains the point x ∈ Ik but is wider than the distance between the two intervals
Ik+1 and Ik−1: hence it intersects either Ik−1 or Ik+1 at a certain point b. Knowing
that (φ, ψ) is conjugate, it follows that φ(a), which equals ψ↓(a)

.
= supB(a,δ) ψ, is

greater or equal than ψ(b), hence φ(a) ≥ min(αk−1, αk+1). This is true for all a in
B(x, δ), so that φ ≥ min(αk−1, αk+1) on Ω∩B(x, δ), and ψ(x) ≥ min(αk−1, αk+1) >
αk for ψ(x) = φ↑(x)

.
= infB(x,δ) φ. This cannot be true. �

This result will allow us to control the amount of monotonicity changes of f and
g uniformly, i.e. in terms of Ω and δ and independently of the functions f and g.
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Corollary 7. The number of floors F1 ≤ . . . ≤ FN of ψ is bounded by a constant
M(Ω, δ), independent from φ, ψ. Moreover, ψ is nondecreasing then decreasing on
each interval between floors, namely it increases on G1, . . . , GN+1 and decreases on
H1, . . . , HN+1 where

G1 ≤ H1 ≤ F1 ≤ G2 ≤ H2 ≤ . . . ≤ FN ≤ GN+1 ≤ HN+1

is a subdivision of Ω in 3N + 2 intervals. A symmetric statement holds for φ.

Proof. We use the same notations as in Lemma 6 :

ψ =
∑

j=1,...,N

αj1Ij

where the Ij ’s are sorted in increasing order and the αj ’s are consecutively distinct.
We have shown that floors separate their adjacent steps by a distance of at least
2δ. Since Ω is bounded, say it has length L, they cannot be more than

⌊

L

2δ

⌋

=:M(Ω, δ).

Now, the union of the intervals between floors (or reaching an endpoint of Ω) can
be cut into two parts, ψ being nondecreasing on the left one, then decreasing on
the right one, because floors separate higher neighbouring steps by definition. The
number of intervals in this subdivision is bounded from above by

3

⌊

L

2δ

⌋

+ 2 =:M ′(Ω, δ). �

Now, we shall extend this result from conjugate step functions to conjugate Borel
functions.

Lemma 8. Let φ, ψ : Ω → R conjugate Borel functions. Then there exists a cover
of Ω by intervals

G1 ≤ H1 ≤ F1 ≤ G2 ≤ H2 ≤ . . . ≤ FN ≤ GN+1 ≤ HN+1

sorted in increasing order, such that N ≤M(Ω, δ), ψ is nondecreasing on each Gi,
nonincreasing on each Hi, and constant on each Fi. Moreover, d(Hj , Gj+1) ≥ 2δ
for all j.

Proof. Let (φn)n a sequence of simple functions converging uniformly to φ. We have
already shown that φ↑n converges uniformly to φ↑ = ψ and φ↑↓n converges uniformly
to φ↑↓. Therefore, up to some renaming, we may assume that (φn, ψn) is a conjugate
pair of step functions such that (φn, ψn) → (φ, ψ) uniformly. Then for all n ∈ N,
let us take (Fn

k )k=1,...,Nn
, (Gn

k )k=1,...,Nn+1, (H
n
k )k=1,...,Nn+1 as in Corollary 7. Up

to extraction, Nn being a sequence of integers bounded by M
.
= M(Ω, δ), we may

assume that it is constant and equal to some N . So far we have

Gn
1 ≤ Hn

1 ≤ Fn
1 ≤ Gn

2 ≤ . . . ≤ Fn
N ≤ Gn

N+1 ≤ Hn
N+1

such that ψn is nondecreasing on the Gn
k ’s, decreasing on the Hn

k ’s and constant on
the Fn

k ’s. For each k = 1, . . . , N , by further extraction, we ensure that the endpoints
of all these intervals converge monotonically when n → ∞, which is possible since
Ω is compact. Let us denote by (Gi)i, (Hi)i and (Fi)i the limit intervals

Gi = limGn
i , Hi = limHn

i , Fi = limFn
i ,

in the sense of point set limits (these are well defined by the monotone convergence
of their endpoints). If we ignore the endpoints of each limit interval Fi, Gi and Hi,
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it is easy to check that these sets give a partition of Ω and that φ and ψ will keep
the same monotonicity behavior of φn and ψn on the interior of each interval. �

Lemma 9. If φ, ψ are conjugate Borel functions, there exists a finite subdivision
of Ω into intervals such that they are of same monotonicity on each interval of the
subdivision.

Proof. Take the subdivision

G1 ≤ H1 ≤ F1 ≤ G2 ≤ . . . ≤ FN ≤ GN+1 ≤ HN+1

given by Lemma 8, where each interval is a monotonicity or constancy interval for
ψ. Each floor interval Fi may be divided into two parts F−

i (the first half of the
interval) and F+

i (the second). More precisely, we define F−
i = Fi∩]−∞,mi] and

F+
i = [mi,+∞[, where mi := (inf Gi+1 + supHi)/2 is the middle point between

the adjacent endpoints of the two intervals next to Fi. In this way both F−
i and

F+
i are at least δ long (in the sense that mi− supHi and inf Gi+1 −mi are at least
δ) and moreover ψ is nondecreasing on each interval of the form F+

i ∪ Gi+1 (and
on the first interval G1) and nondecreasing on each Hi ∪ F

−
i (and on HN+1).

It is not difficult to check that φ has the same monotonicity of ψ on these
intervals. Let us consider for instance the case of F+

i ∪ Gi+1, where ψ is nonde-
creasing. Let us denote by a and b its endpoints, i.e. a = inf F+

i , b = supGi+1 and
F+
i ∪Gi+1 = [a, b] ∩ Ω. Consider that ψ is also nondecreasing (actually, constant)

on [a − δ, a], since this segment is included in F−
i : this implies that φ = ψ↓ is

nondecreasing as well on the interval [a, b−δ] (as a consequence of the fact that the
behavior of φ on an interval only depends on the behavior of ψ on the same interval
enlarged by δ). We are only left to prove that φ is also nondecreasing on ]b − δ, b]
but this is easy to check since φ is actually constant on this segment. Indeed, the
value ψ(b) is the maximum of ψ on [b − δ, b + δ], which implies that φ is constant
on ]b− δ, b+ δ[.

An analogous proof works for the intervals Hi ∪ F
−
i and for G1 and HN+1. �

This last result will be the key point in the proof of the existence of an optimal
map, since the following lemma allows for building transport maps which are in-
cluded in a given strip, provided the boundaries of the strip are given by functions
with the same monotonicity.

Lemma 10. Consider two probabilities µ ∈ P(Ω) and ν ∈ P(Ω′) and two Borel
functions φ, ψ : Ω → Ω with the same monotonicity and such that φ ≤ ψ. If there
exist γ ∈ Π(µ, ν), T ∈ T(µ, ν) such that Supp γ ⊂ [φ, ψ] and such that T has the
same monotonicity as φ and ψ, then the graph of T is µ-almost everywhere included
in [φ, ψ].

Proof. Let a be such that for some x0 we have T (x0) < a < φ(x0). One has
µ(x : T (x) ≤ a) = ν(y : y ≤ a) and hence γ((x, y) : T (x) ≤ a) = γ((x, y) : y ≤ a).
By subtracting the same quantity γ((x, y) : T (x) ≤ a, y ≤ a) to these two measures
we get

γ((x, y) : T (x) ≤ a < y) = γ((x, y) : y ≤ a < T (x)).

But for (x, y) to be in the right-hand side set, since T (x0) < a, T is nondecreasing
and a < T (x), one must have x > x0. Hence φ(x) ≥ φ(x0) > a since φ is also
nondecreasing. Therefore

γ ((x, y) : y ≤ a < T (x)) ≤ γ ((x, y) : y ≤ a < φ(x))
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which is null for γ is concentrated on Γ ⊂ [φ, ψ]. As a result γ((x, y) : T (x) ≤ a <
y) = 0 and γ((x, y) : T (x) ≤ a < φ(x) ≤ y) = 0 as well by inclusion. Notice that
the condition φ(x) ≤ y is useless here, since γ is concentrated on [φ, ψ], and this
also gives

µ(x : T (x) ≤ a < φ(x)) = γ((x, y) : T (x) ≤ a < φ(x))

= γ((x, y) : T (x) ≤ a < φ(x) ≤ y) = 0.

This means that for all a such that T (x0) < a < φ(x0) for some x0,

µ(x : T (x) ≤ a < φ(x)) = 0.

Taking a countable dense set of such a’s, this yields

µ(x : T (x) < φ(x)) = 0.

An analogous proof provides T ≤ ψ µ−a.e. �

We are now ready to prove the main theorem of this paper.

Proof of Theorem 2. We replace f and g by f↑↓ and g↑ +K. Lemma 9 shows that
one can find a finite subdivision of Ω into intervals Ω1, . . . ,ΩN on which f and
g are of same monotonicity. Let us set γ⋆j = γ⋆|Ωj×Ω, µj = π1(γ

⋆
j ), νj = π2(γ

⋆
j )

and fj = f|Ωj
, gj = g|Ωj

so that γ⋆j ∈ Π(µj , νj) is supported in [fj , gj]. Since the
µj ’s have no atom, it is a classical result that there exists a unique transport map
Tj ∈ T(µj , νj) with the same monotonicity of f and g. Since Supp γ⋆j ⊂ [fj , gj],

Lemma 10 guarantees that Tj has its graph µ-almost everywhere included in [fj , gj].
We shall naturally glue these Tj ’s together, posing T (x) = Tj(x) on Ωj . It is clear
that T ∈ T(µ, ν) and that Supp γT ⊂ [f, g] which implies by optimality of [f, g]
that ωδ(T ) = K. It is an optimal transport map for the cost ωδ. �

4. A counter-example

We finish this analysis with an easy counter-example, showing that the optimal
transport map T is not always monotone (which would trivialize the interest of
the previous existence results). This example is essentially due to J. Louet ([5]),
who found it for another variational problem. Yet, it can be easily adapted to our
scopes.

Consider the map U : [0, 1] → [0, 1] given by

U(x) =

{

2x if x ≤ 1
2 ,

2− 2x if x ≥ 1
2 .

Consider µ = f(x)dx a probability measure on [0, 1] given by the density f :

f(x) =

{

8
5 if x ∈

[

0, 14
]

∪
[

3
4 , 1
]

,
2
5 if x ∈

[

1
4 ,

3
4

]

.

Take ν = U#µ. It is not difficult to check that ν is supported on [0, 1], and is
absolutely continuous with density g

g(x) =

{

8
5 if x ∈

[

0, 12
]

,
2
5 if x ∈

[

1
2 , 1
]

.
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Also, one can compute the unique monotone increasing map T such that T#µ = ν.
Its expression is

T (x) =



















x if x ∈
[

0, 14
]

,
1
4 + 1

4 (x − 1
4 ) if x ∈

[

1
4 ,

3
4

]

,

x− 3
8 if x ∈

[

3
4 ,

7
8

]

,
1
2 + 4(x− 7

8 ) if x ∈
[

7
8 , 1
]

.

The unique monotone decreasing map is simply symmetric to T , due to the sym-
metry of the starting measure µ.

Consider now δ ≤ 1
8 . It is easy to check that we have ωδ(T ) = 4δ (a slope of 4

is realized in the last interval
[

7
8 , 1
]

, whose length is 1
8 ), while ωδ(U) = 2δ (since U

has always slope 2).
This proves that, for these given choices of µ, ν and δ, the optimal map cannot

be T (it does not prove on the contrary that the optimal map is U).

•

1
4

•

3
4

• 1
2

f = 8
5 f = 8

5f = 2
5

g = 8
5

g = 2
5

U(x)

•

1
4

•

3
4

• 1
2

f = 8
5 f = 8

5f = 2
5

g = 8
5

g = 2
5

T (x)

5. Technical extensions

For the sake of simplicity, we tried to describe our problem sticking to the easiest
case. For instance, we assumed both Supp(µ) and Supp(ν) to be compact, which
simplified some proofs.

Also, we used the same set Ω both as the support of µ and as the domain where
the functions are defined and the oscillation ωδ is computed. Indeed, if we take
a measure which is not fully supported on a set Ω, we could face two reasonable
choices for the functional ωδ, since one could take the supremum over pairs of point
x, x′ ∈ Supp(µ) with |x−x′| < δ, or more generally over x, x′ ∈ Ω with |x−x′| < δ.
We chose the first definition, which is easier to handle and corresponds more to the
application we had in mind.

Yet, it is true that the behavior of T on Ω \ Supp(µ) does not affect the image
measure constraint, but it could affect the value of ωδ if the second definition is
chosen, thus penalizing big jumps of T between different connected components
of Supp(µ). The problem is that this second definition makes it more difficult to
define a Kantorovich approach and we need to slightly change our functional ωK

δ .

5.1. Optimal plans and maps in the non-compact case. Few adaptations
have to be performed for the existence of an optimal plan if µ, ν are not compactly
supported.
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First, let us notice that in this case the existence of a plan γ ∈ Π(µ, ν) such that
ωK
δ (γ) < +∞ is not straightforward (unless Supp(ν) is compact) and has to be

supposed. This fact more or less corresponds to the fact that ν has a queue which
is comparable to (or smaller) than that of µ, i.e. that there exists a constant k such
that ν(Bc

kr) ≤ µ(Bc
r) for large r. Anyway, let us assume that inf(Kδ) < +∞.

It is standard and well-known in optimal transport (see for instance [11]) that
for given µ, ν the set Π(µ, ν) is a tight subset of P(Ω×Ω). This still allows for the
extraction of a weakly converging subsequence γn ⇀ γ.

Obviously we cannot take a subsequence such that Γn Hausdorff converges to
Γ since this would require the domain to be compact. Yet, we can easily, by a
diagonal argument, extract a subsequence such that for every natural integer R we
have Γn ∩ (BR ×BR) → ΓR ⊂ BR ×BR.

Since we can write ωK
δ = supR ω

K
δ,R, where

ωK
δ,R(γ) := sup

{

|y − y′| : (x, y), (x′, y′) ∈ Supp(γ) ∩
(

BR ×BR

)

, |x− x′| < δ
}

,

we can infer the semicontinuity of ωK
δ from that of each ωK

δ,R, which can be proven

using Supp(γ) ∩ (BR ×BR) ⊂ ΓR and applying the same arguments as above.
Once the existence of an optimal plan is established, one needs to adapt the

content of Section 3 to the case where Ω is non-compact. This is not difficult once
we notice that the support Γ of an optimal plan γ must be “locally bounded” in the
following sense.

If we suppose that the minimum of ωK
δ is finite, i.e.K < +∞, then every vertical

fiber {y : (x, y) ∈ Γ} has diameter bounded above by K (since if (x, y) and (x, y′)
belong to Γ, then we should have |y− y′| ≤ K due to |x− x| = 0 < δ). This proves
that f and g are well defined. Not only, for every x f is bounded above by f(x)+K
on the whole ball B(x, δ), which allows, by recursively applying this bound, to say
that f is locally bounded. Analogous considerations hold for g. In particular, the
intersection of the support of Γ with vertical strips of the form BR×R are bounded
and hence compact.

The only extra point to remark in order to perform the same analysis on R

is that we will have no more a finite number of intervals: when we approximate
(Proposition 5) φ and ψ with step functions this will be done with functions which
are constant on a countable (but locally finite) number of intervals; the sum in
Lemma 6 will be no longer finite but locally finite, and the bounds on the number
of intervals appearing in Corollary 7 and on will only be local. Yet, the main points
of the proof will stay the same, since they are essentially local.

5.2. Wider definition of ωδ. If one considers a measure µ which is not fully
supported on Ω but wants to define ωδ in the following way

ωδ(T ) := sup
x,x′∈Ω, |x−x′|<δ

|T (x)− T (x′)|,

then the definition of the functional ωK
δ has to be changed, since that of Section 2.1

only considers pairs (x, y) and (x′, y′) in the support of γ, so that x, x′ ∈ Supp(µ).
A possible way to overcome the problem is the following: define

ωK
δ (γ) := inf {sup{|y − y′| : (x, y), (x′, y′) ∈ Γ, |x− x′| < δ} : Γ ∈ A(γ)} ,

where

A(γ) := {Γ ⊂ Ω× R : Γ ⊃ Supp(γ), π1(Γ) = Ω}.



14 DIDIER LESESVRE, PAUL PEGON, FILIPPO SANTAMBROGIO

This means that, instead of computing a maximal oscillation on the support
of γ, we compute it on sets which are extensions of this support, but have full
projection onto Ω, and we chose the best possible extension. Again, this functional
only depends on Supp(γ), as in Section 2.1.

The existence of an optimal γ both in the compact or non-compact case easily
follows from the same considerations, simply replacing the support with this set Γ
(in a minimizing sequence, take a sequence of sets Γn, make it converge to a set Γ,
which will contain the support of the limit measure. . . ).

Moreover, for any fixed measure γ it is straightforward that an optimal set Γ
does exist (same argument), and we will use this set to define the functions f and
g of Section 3.1. The rest of the construction is exactly the same.
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