Multifractal random walks with fractional Brownian motion via Malliavin calculus
Résumé
We introduce a Multifractal Random Walk (MRW) defined as a stochastic integral of an infinitely divisible noise with respect to a dependent fractional Brownian motion. Using the techniques of the Malliavin calculus, we study the existence of this object and its properties. We then propose a continuous time model in finance that captures the main properties observed in the empirical data, including the leverage effect. We illustrate our result by numerical simulations.
Domaines
Probabilités [math.PR]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...