Probabilistic Auto-Associative Models and Semi-Linear PCA - Archive ouverte HAL Access content directly
Journal Articles Advances in Data Analysis and Classification Year : 2015

Probabilistic Auto-Associative Models and Semi-Linear PCA

Abstract

Auto-Associative models cover a large class of methods used in data analysis. In this paper, we describe the generals properties of these models when the projection component is linear and we propose and test an easy to implement Probabilistic Semi-Linear Auto- Associative model in a Gaussian setting. We show it is a generalization of the PCA model to the semi-linear case. Numerical experiments on simulated datasets and a real astronomical application highlight the interest of this approach
Fichier principal
Vignette du fichier
aam-article-v2.pdf (642.45 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-00734070 , version 1 (20-09-2012)
hal-00734070 , version 2 (10-12-2014)

Identifiers

Cite

Serge Iovleff. Probabilistic Auto-Associative Models and Semi-Linear PCA. Advances in Data Analysis and Classification, 2015, 9 (3), pp.20. ⟨10.1007/s11634-014-0185-3⟩. ⟨hal-00734070v2⟩
175 View
203 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More