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Abstract Auto-Associative models cover a large class of methods used in data anal-
ysis, among them are for example the famous PCA and the auto-associative neural
networks. In this paper, we describe the general properties of these models when the
projection component is linear and we propose and test an easy to implement Prob-
abilistic Semi-Linear Auto-Associative model in a Gaussian setting. We show that it
is a generalization of the PCA model to the semi-linear case. Numerical experiments
on simulated datasets and a real astronomical application highlight the interest of this
approach.

Keywords Auto-Associative Models · Non-Linear PCA · Probabilistic Non-Linear
PCA

1 Introduction

Principal component analysis (PCA) Pearson (1901); Hotelling (1933); Jolliffe (1986)
is a well established tool for dimension reduction in multivariate data analysis. It ben-
efits from a simple geometrical interpretation. Given a set of n points Y=(y1, . . . ,yn)

′

with yi ∈Rp and an integer 0≤ d ≤ p, PCA builds the d-dimensional affine subspace
minimizing the Euclidean distance to the scatter-plot Pearson (1901). The applica-
tion of principal component analysis postulates implicitly some form of linearity.
More precisely, one assumes that the data cloud is directed, and that the data points
can be well approximated by their projections to the affine hyperplane corresponding
to the first d principal components.

Starting from this point of view, many authors have proposed nonlinear extensions
of this technique. Principal curves or principal surfaces methods Hastie and Stuetzle
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(1989); Hastie et al (2001); Delicado (2001) as well as non-linear transformation of
the original data set Durand (1993); Besse and Ferraty (1995) belong to this family
of approaches. The auto-associative neural networks can also be viewed as a non-
linear PCA model Baldi and Hornik (1989); Lu and Pandolfo1 (2010); Bishop (2006);
Hinton et al (1997). In Girard and Iovleff (2005) we propose the auto-associative
models (AAM) as candidates to the generalization of PCA using a projection pursuit
regression algorithm Friedman and Stuetzle (1981); Klinke and Grassmann (2000)
adapted to the auto-associative case. A common point of these approaches is that
they have the intent to estimate an auto-associative model whose definition is given
hereafter.

Definition 1 A function g is an auto-associative function of dimension d if it is a
map from Rp to Rp that can be written as g = R ◦P where P (the “Projection”) is a
map from Rp to Rd (generally d < p) and R (the “Restoration” or the ”Regression”)
is a map from Rd to Rp.

An auto-associative model (AAM) of dimension d is a manifold Mg of the form

Mg = {y ∈ Rp, y−g(y) = 0}

where g is an auto-associative function of dimension d.

For example PCA constructs an auto-associative model using as auto-associative
function an orthogonal projector on an affine subspace of dimension d. More pre-
cisely we have

g(y) = m+
d

∑
i=1

〈
ai,y−m

〉
ai, y ∈ Rp

y,m,ai ∈ Rp. m is a position parameter and the vectors ai are chosen in order to
maximize the projected variance. g can be written g = R◦P with

P(y) =
(〈

a1,y−m
〉
, . . . ,

〈
ad ,y−m

〉)
and

R(x) = m+ x1a1 + . . .+ xdad

with x = (x1, . . . ,xd)
′. The AAM is then the affine subspace given by the following

equation

Mg =

{
y ∈ Rp; y−m−

d

∑
i=1

〈
ai,y−m

〉
ai = 0

}
Interested reader can check that principal curves, principal surfaces, auto-associative
neural networks, kernel PCA Schölkopf et al (1999), ISOMAP Tenenbaum (2000)
and local linear embedding Roweis and Saul (2000) have also the intent to estimate
an AAM.

In the PCA approach the projection and the restoration function are both linear. It
is thus natural to say that the PCA model is a Linear Auto-Associative Model. In the
general case, the manifold Mg set can be empty (i.e. the auto-associative function g
has no fixed point) or very complicated to describe. Our aim in this paper is to study
from a theoretical and practical point of view the properties of some Auto-Associative
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models in an intermediary situation between the PCA model and the general case:
we will assume that the projection function is linear and let the regression function
be arbitrary. We call the resulting AAM the Semi-Linear Auto-Associative Models
(SLAAM).

Having restricted our study to the SLAAM, we have to give us some criterion to
maximize. As we said previously, PCA tries to maximize the projected variance or,
equivalently, to minimize the residual variance. Common AAM approaches also used
the squared reconstruction error as criterion, or more recently a penalized criterion
Hastie et al (2001). However as pointed out by M. E. Tipping and C. M. Bishop
Tipping and Bishop (1999), one limiting disadvantage of this approach is the absence
of a probability density model and associated likelihood measure. The presence of a
probabilistic model is desirable as

– the definition of a likelihood measure permits comparison between concurrent
models and facilitates statistical testing,

– A single AAM may be extended to a mixture of such models,
– if a probabilistic AAM is used to model the class conditional densities in a clas-

sification problem, the posterior probabilities of class membership may be com-
puted.

We propose thus a Gaussian generative model for the SLAAM and try to estimate it
using a maximum likelihood approach. In the general case we are faced with a diffi-
cult optimization problem and we cannot go further without additional assumptions.
It will appear clearly that if the projection P, identified hereafter with a matrix P,
is known then the estimation problem of a SLAAM is very close to an estimation
problem in a regression context. However, there are some differences we will under-
line. In particular it will appear that in order to get tractable maximum-likelihood
estimates, we have to impose some restrictions to the noise. We call the resulting
model of all these assumptions/simplifications a Semi-Linear Principal Component
Analysis. It does not seem possible to add non-linearity to the PCA model and get
tractable likelihood estimate for P. But clearly, the assumption that P is known is too
strong in practice. We thus propose to estimate it in a separate step using either PCA
or a contiguity analysis Lebart (2000). Finally, even if P is assumed to be known, it
remains to estimate the regression function R which is a non-linear function from Rd

to Rp. If d > 1 and p is moderately high the task becomes very complicated. Thus the
implementation of the model proposed in this paper simplifies it once more. In this
implementation, we assume that R is additive inspired by the Generalized Additive
Model (GAM) approach Hastie and Tibshirani (1990).

In view of the experiments we have performed and we present here, it seems we
obtain a practical and simple model which generalizes the PCA model to the non-
linear case in an understandable way. The main advantages of the proposed model
are:

1. the projection step being linear, it is easy to interpret the projected values X =
(x1, . . . ,xn)

′ in term of the original variables Y and to represent them in a (kind
of) bi-plot graph (see Gower and Hand (1995)),

2. the regression functions can be drawn individually, i.e. we can fix p− 1 coordi-
nates to a value, say for example xk = 0 if k 6= j, and, using the additivity, represent
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the maps x j → R j(x j) for j = 1, . . . ,d, in order to get a better understanding of
the (eventually) non-linearity present in the data in term of x j,

3. the probabilistic model allows to choose the intrinsic dimension of the projection
and the regression function using a model selection criterion.

Some illustrative tables and graphs can be found in the examples given in this paper
(section 5) and illustrate these facts. The main disadvantages of the method are

1. its use of intensive numerical computations, so that it cannot be applied to very
big data sets (either in the number of individuals or number of variables),

2. the use of linear projection functions doesn’t allow to modelize data presenting
too strong non-linearity (see proposition 3).

The paper is organized as follows. Section 2 introduces the Probabilistic Semi-
Linear Auto-Associative Models and relate them to the PCA and Probabilistic PCA
models. In section 3 we present the Semi-Linear PCA models and the estimation of
theirs parameters conditionally to the knowledge of the projection matrix P. Section
4 focus on implementation details, in particular section 4.1 is devoted to the determi-
nation of the projection matrix P using either PCA or contiguity analysis, and section
4.2 presents the additive B-Spline regression. Data sets and experiments are detailed
in Section 5 with a real astronomical data set. Some comparisons are done with the
usual PCA method. Finally, some concluding remarks are proposed in Section 6.

2 Semi-Linear Auto-Associatif Models (SLAAM)

2.1 Geometrical properties of the SLAAM

Let us first consider a general auto-associative model Mg with g = R◦P as given in
the definition 1. We have the following evident property

Proposition 1 Let H = {P(y); y ∈Mg} ⊂Rd . On H the projection function and the
regression function verify

P◦R = Idd (1)

where Idd denote the identity function of Rd .

Proof Let y ∈Mg and let x = P(y), then

x = P(y) = P(g(y)) = P(R(P(y))) = P(R(x)).

As a consequence, we have the following “orthogonality” property verified by an
AAM when P is an additive function

Proposition 2 Let V = {P(y); y ∈ Rp} and assume that the property (1) extends on
V , let y∈Rp, ȳ=R(P(y)) and ε̄ = y− ȳ. If P is additive, i.e. P(y+y′)=P(y)+P(y′),
then

P(ε̄) = 0.
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Proof Using the property (1), we have on one hand P(ȳ) = P(R(P(y))) = P(y).
While on the other hand P(ȳ) = P(y− ε̄) = P(y)−P(ε̄) giving the announced re-
sult.

Clearly we have H ⊂ V and the assumption given in this proposition seems quite
natural. We focus now on the semi-linear case and we assume that

P(y) =
(〈

a1,y
〉
, . . . ,

〈
ad ,y

〉)
= Py. (2)

with P = (a1, . . . ,ad)′ a matrix of size (d, p).

Proposition 3 Let g = R◦P be an auto-associative function, with P given in (2) and
R verifying the property (1). Let B =

(
a1, . . . ,ad ,ad+1, . . . ,ap

)
be an orthonormal

basis of Rp with (ad+1, . . . ,ap) chosen arbitrarily. Let y∈Mg, and let ỹ and R̃ denote
respectively the vector y and the auto-associative function R in the basis B, then

ỹ1
...

ỹd
ỹd+1

...
ỹp


=



ỹ1
...

ỹd
R̃d+1(ỹ1, . . . , ỹd)

...
R̃p(ỹ1, . . . , ỹd)


. (3)

Proof It is sufficient to notice that the change of basis matrix Q is given by

Q′ =
(

a1, . . . , ad , a(d+1), . . . , ap
)
,

thus the left multiplication of y and R by Q, using (1), will give (3).

From this last proposition we can see that the Semi-Linear Auto-Associative mod-
els have a relatively simple geometrical structure and that we cannot expect to model
highly non-linear models with them.

2.2 Probabilistic Semi-Linear Auto-Associative Models

In the sequel, we will denote by V the subspace spanned by the set of vectors (a1, . . . ,ad),
and give us an arbitrary orthonormal basis of V⊥ denoted by (ad+1, . . . ,ap). We will
denote by P the matrix (a1, . . . ,ad)′ and by P̄ the matrix (ad+1, . . . ,ap)′. As in propo-
sition 3, Q represents the unitary matrix (P|P̄)′ = (a1, . . . ,ap)′.

2.2.1 General Gaussian Setting

Definition 2 Let x be a d-dimensional Gaussian random vector:

x∼N (µx,Σx) (4)

and let ε̃ be a p-dimensional centered Gaussian random vector, independent of x,
with a diagonal covariance matrix Σε̃ = Diag(σ1, . . . ,σp). The p-dimensional vector
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y is a Probabilistic Semi-Linear Auto-Associative Model (semi-linear PCA) if it can
be written as

y = Q′





x1
...

xd
r̃d+1(x)

...
r̃p(x)


+ ε̃


= R(x)+ ε, (5)

where the r̃ j(x), d +1≤ j ≤ p, are arbitrary real functions from Rd to R.

2.2.2 Link with the Principal Component Analysis

Assume that:

1. r̃ j(x) = µ̃ j for all j ∈ {d +1, . . . p},
2. the covariance matrix of x, Σx = Diag(σ2

1 , . . . ,σ
2
d ) is diagonal with σ1 ≥ σ2 ≥

. . .≥ σd ,
3. the Gaussian noise ε̃ has the following covariance matrix Σε =Diag(0, . . . ,0,σ2, . . . ,σ2)

(d zeros and p−d sigmas on the diagonal) with σ < σd

then the vector y is a Gaussian random vector

y∼N (µ,Σ)

with

µ = Q′



µ̃1
...

µ̃d
µ̃d+1

...
µ̃p


and Σ = Q



σ1
. . . 0

σd
σ

0
. . .

σ


Q′

and a1, . . . ,ad are the d first eigenvectors given by PCA.

2.2.3 Link with the Probabilistic Principal Component Analysis

The probabilistic PCA Tipping and Bishop (1999) is a model of the form

y = µ +Wx+ ε, (6)

with W a (p,d) matrix, x a d-dimensional isotropic Gaussian vector, i.e. x∼N (0, Id),
and ε a p-dimensional centered Gaussian random vector with covariance matrix σ2Ip.
The law of y is not modified if W is right multiplied by a (d,d) unitary matrix, it is
thus possible to impose to the rows of W to be orthogonal (assuming that W is of full
rank).

The following proposition is then straightforward
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Proposition 4 Assume that ε̃ (and thus ε) is an isotropic Gaussian noise, i.e. Σε̃ =
σ2Ip, take r̃ j = µ̃ j for all d +1≤ j ≤ p and set

W = P′


σ1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 σd

 .

The resulting Probabilistic Semi-Linear Auto-Associative Model is a Probabilistic
Principal Component Analysis.

For this simple model there exists a close form of the posterior probability of y
and for the maximum likelihood of the parameters of the model. In particular, the
matrix W can be estimated up to a rotation and spans the principal subset of the data.

3 Semi-Linear PCA

Our aim is now to generalize the PCA model we present in part 2.2.2 to the semi-
linear case and we assume in the rest of this article that
[N] the Gaussian noise ε̃ have the following covariance matrix

Σε̃ = Diag(0, . . . ,0,σ2, . . . ,σ2).

Σε̃ is a diagonal matrix with d zeros and p−d sigmas on the diagonal.
As we said in the introduction, adding non-linearity make everything more dif-

ficult and a practicable/tractable implementation for a real usage forces us to make
some simplifications. The model is estimated using a two stages strategy: we first de-
termine the projection matrix P using either the first components of a PCA or using
a contiguity analysis (section 4.1), and in a second step we estimate the parameters
and the regression function R (section 4.2).

Using [N] and expressing y in the basis B (definition 2) by rotation we get the
following expression for ỹ:

ỹ1
...

ỹd
ỹd+1

...
ỹp


=



x1
...

xd
r̃d+1(x)

...
r̃p(x)


+



0
...
0

ε̃d+1
...

ε̃p


. (7)

In other words, the coordinates of ỹ can be split in two sets. The first d coordinates are
the Gaussian random vector x, while the remaining p− d coordinates are a random
vector z which is conditionally to x a Gaussian random vector N

(
r̃(x), σ2Ip−d

)
.

Observe that the regression functions are dependents of the choice of the vectors
ad+1, . . . ,ap and that, as the noise ε lives in the orthogonal of V , we have x = Py.
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The parameters we have to estimate are the position and correlation parameters
µx and Σx for the x part and the noise and the regression functions (σ2, r̃) for the
non-linear part. Given a set of n points Y = (y1, . . . ,yn)

′ in Rp, we get by projection
two sets of n points X = (x1, . . . ,xn)

′ = YP′ in Rd , and Z = (z1, . . . ,zn)
′ = YP̄′ in

Rp−d .
Standard calculation give the Gaussian maximum likelihood for µx and Σx

µ̂x =
1
n

n

∑
i=1

xi. (8)

and

Σ̂x =
1
n

n

∑
i=1

(xi− µ̂x)(xi− µ̂x)
′. (9)

The maximum likelihood of σ2 is given by

σ̂
2 =

1
n(p−d)

n

∑
i=1

∥∥zi− ˆ̃r(xi)
∥∥2

. (10)

It remains to estimate r̃. This will be obtained by minimizing σ̂2. Many para-
metric or non-parametric regression tools can be used for this purpose. A practical
method based on B-Spline is presented in the next section.

4 Computational aspects

This section is devoted to the description of two main computational steps: the de-
termination of a ”good” projection matrix (section 4.1), and the estimation of the
regression function (section 4.2). We also present briefly the model selection crite-
ria AIC and BIC (section 4.3) and we terminate with some practical implementation
details (4.4). All the methods described are implemented in a C++ library called aam.

4.1 Computing the Projection matrix : PCA and Contiguity Analysis

Given (a1, . . . ,ad) an orthonormal set of vector in Rp, an index I: Rp×d → R+ is a
functional measuring the interest of the projection of the vector y on Vec(a1, . . . ,ad)
with a non negative real number. The choice of the index I is crucial in order to find
”good” parametrization directions for the manifold to be estimated. We refer to Huber
(1985) and Jones and Sibson (1987) for a review on this topic in a projection pursuit
setting. The meaning of the word ”good” depends on the considered data analysis
problem. For instance, Friedman et al Friedman and Tukey (1974); Friedman (1987),
and more recently Hall Hall (1990), have proposed an index which measure the devi-
ation from the normality in order to reveal more complex structures of the scatter plot.
An alternative approach can be found in Caussinus and Ruiz-Gazen (1995) where a
particular metric is introduced in PCA in order to detect clusters. We can also mention
the index dedicated to outliers detection Pan et al (2000).
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A widely used choice of I is I(
〈
a1,y

〉
, . . . ,

〈
ad ,y

〉
) = tr(Var [Py]), the projected

variance. This is the criterion maximized in the usual PCA method Jolliffe (1986). It
can be computed using the total variance matrix

V =
1
n

n

∑
i=1

(yi− µ̂)(yi− µ̂)′. (11)

and by maximizing

I(a1, . . . ,ad) =
d

∑
i=1

ai′Vai,
〈
ai,a j〉= δi j, (12)

where δi j represent the Kronecker’s delta. The resulting vectors are then the eigen-
vectors associated to the d largest eigenvalues of V.

An other approach generalizes the one presented in Girard and Iovleff (2005)
and consists in defining a contiguity coefficient similar to Labart one’s Lebart (2000)
whose maximization allows to unfold nonlinear structures. A contiguity matrix is a
n×n boolean matrix M whose entry is mi j = 1 if data points i and j are ”neighbors”
and mi j = 0 otherwise. Lebart proposes to use a threshold r0 to the set of n(n− 1)
distances in order to construct this matrix (but the choice of r0 could be delicate if the
data scale is not homogeneous) or to use a k-contiguity matrix, i.e. to set mi j = 1 iff
j is one of the k-nearest neighbor of i. This is the approach we have implemented.

The contiguity matrix being determinate, we compute the local covariance matrix

V∗ =
1

2kn

n

∑
i=1

n

∑
j=1

mi j(yi−y j)(yi−y j)
′. (13)

The axis of projection are then estimated by maximizing the contiguity index

I(a1, . . . ,ad) =
d

∑
i=1

ai′V∗ai

ai′Vai . (14)

which can be expected to unfold the scatter-plot since distant observations are ignored
in computing the local covariance matrix. Using standard optimization techniques, it
can be shown that the resulting axis are the d eigenvectors associated with the largest
eigenvalues of the matrix V ∗−1V .

The behavior of the PCA and contiguity indexes is illustrated on the next two
figures (figure 1). Three hundred data have been simulated uniformly on the intervals
[−1,1]2 and [−2,2]2 and the third coordinate have been computed on the parabola
z= x2+y2. In the first case PCA and contiguity methods give almost the same results,
while in the second case the contiguity method preserve the local structure of the
scatter-plot.
Remark: In all the examples k has been fixed to 3. It seems to be a good compromise
between the computational time (the computation of V∗ increase with k) and the
stabilization of the index.
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Fig. 1 Planes of projection using the PCA index (dark gray) and the contiguity index (light gray) with 3
neighbors. The planes have been shifted from the origin for display purpose.

4.2 Estimating the Regression function: Linear regression and additive B-Spline
regression

4.2.1 Linear Regression

In the linear case, we are looking for a vector µ and a (d, p−d) matrix R minimizing
n

∑
i=1

∥∥zi−µ−R′xi
∥∥2

.

It is easily verified that

µ̂ =
1
n

n

∑
i=1

(
zi−R′xi

)
= µ̂z−R′µ̂x.

Setting X̄ = X− 1µ̂ ′x and Z̄ = X− 1µ̂ ′z, where 1 represent a vector of size n with 1
on every coordinates. Assuming that the matrix X̄′X̄ is invertible, standard calculus
show that

R̂ = (X̄′X̄)−1X̄′Z̄.
Finally, using the decomposition in eigenvalues of the covariance matrix of Y, it

is straightforward to verify the following theorem

Theorem 1 If the d orthonormal vectors a1, . . . ,ad are the eigenvectors associated
with the first d eigenvalues of the covariance matrix of Y then the estimated auto-
associative model is the on obtain by PCA.

4.2.2 Additive B-Spline regression

B-Spline regression allows to approximate a curve s(x) defined from the interval [a,b]
into Rp using a set of n observations (xi,yi)

n
i=1 ranging over [a,b]×Rp. Given a set

of m+ k+1 real values ti, called knots, such that

t0 ≤ t1 ≤ . . .≤ a = tk−1 ≤ . . .≤ tm+1 = b≤ . . .≤ tm+k.
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A B-Spline curve of degree k is defined by

s(x) =
m

∑
l=0

α lsl(x), x ∈ [tk−1, tm+1].

Points (α l)
m
l=0 are called the control points and the functions (sl)m

l=0 are the m+ 1
B-Spline basis of order k computed using the Cox-De Boor recursion formula (see
de Boor (1978) for details). m and k are numbers fixed by the user.

Given d sets of m+k+1 knots t j
i , an additive B-spline curve of degree k is defined

by

s(x) =
d

∑
j=1

m

∑
l=0

α ls jl(x j), x j ∈ [t j
k−1, t

j
m+1].

For simplicity, the number of control point have been set equal for all j.
In order to estimate the regression function r̃, we express it as an additive linear

combination of m+ 1 B-Spline basis functions r jl . We have thus to estimate the set
of coefficients (α jl), j = 1, . . . ,d, l = 0, . . .m by minimizing

n

∑
i=1

∥∥∥∥∥zi−α0−
d

∑
j=1

m

∑
l=0

α jlr jl(xi j)

∥∥∥∥∥
2

.

Standard regression techniques give then the estimates α̂ = ((S′S)−1S′Z) where
S is the design matrix which depends on the knots position, the degree of the B-
Spline and the number of control points chosen by the user Prautzsch et al (2002).
The regression function r̃ is then estimated by the formula

ˆ̃r(x) = α̂0 +
d

∑
j=1

m

∑
l=0

α̂ jlr jl(x j) = α̂0 +
d

∑
j=1

ˆ̃r j(x j).

Remark: In the examples presented below we use cubic B-Spline basis but the aam
library allow the user to chose its own degree. The knots t j are regularly spaced in
the range of (xi j)

n
i=1.

4.3 Model Selection

Since a Semi-linear PCA model depends highly of the projection matrix P and the
regression function, model selection allows to select among various candidates the
best projection and the number of control points. Several criteria for model selec-
tion have been proposed in the literature and the widely used are penalized like-
lihood criteria. Classical tools for model selection includes Akaike Akaike (1974)
and Bayesian Schwarz (1978) information criteria. The Akaike Information Crite-
rion (AIC) is a measure of the relative goodness of fit of a statistical model given by
−2ln(L)+ 2γ(M ) and the Bayesian Information Criterion (BIC) consists in select-
ing the model which penalizes the log-likelihood by γ(M )

2 log(n) where γ(M ) is the
number of parameters of the model M and n is the number of observations.
Remark: In this paper we use BIC because of its popularity but the aam library allows
to use AIC.
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4.4 Estimation in practice

The drawback of the previous maximum likelihood equations (7) and (10) is that we
have to perform a rotation of the original data set in order to estimate the regression
function and next to perform and inverse rotation of the estimated model. In practice,
having fixed the dimension d of the model and the number of control point m, we
avoid such computations by estimating the model using the following steps:

– Center and (optionally) standardize the data set Y: obtain Ȳ,
– Compute the projected data set X = ȲP′ (X is centered),
– Compute the regression Ȳ∼ X (without intercept),
– Compute the residual variance σ̂2, the log-likelihood and the BIC.

As we can see the main difference is in the regression step: we estimate directly a
function from Rd to Rp. In practice, as the non-linear part of the model is in V⊥, the
regression function we obtain numerically give the identity function in the V space.

These estimations are repeated for d (the dimension of the auto-associative model)
varying from 1 to a fixed value dmax, and for m (the number of control point) varying
from 4 to a fixed value mmax (for a cubic B-Spline interpolation we cannot have less
than 4 control points). The model with smallest BIC is selected.

5 Examples

We first present two illustrations of the estimation principle of semi-linear PCA on
low dimensional data (Section 5.1 and 5.2). Second, semi-linear PCA is applied to an
astronomical analysis problem in section 5.3. In all the examples, we use an additive
B-Spline regression model for the estimation of the regression function R̃ (section
4.2.2). The B-Spline are of degree 3 and we select the number of control points using
BIC. All the results are compared with PCA results.

5.1 First example on simulated data

The data are simulated using a one-dimensional regression function in R3. The equa-
tion of the AA model is given by

u→ (u,sinu,cosu), (15)

and thus P(u,v,w) = u. The first coordinate of the random vector is sampled 1000
times from a centered Gaussian distribution with standard deviation σx = 3. An inde-
pendent noise with standard deviation σ = 1 is added to the v and w coordinates.

The axis of projection have been computed by PCA and by contiguity analysis
(section 4.1) using the 3 nearest neighbors for the proximity graph. The correlations
between the projected data set x and the original data set are

y1 y2 y3
x (contiguity) 0.999968 -0.000579458 0.0089
x (PCA) 0.999997 0.008813556 0.0118



Probabilistic Auto-Associative Models and Semi-Linear PCA 13

which show that the first axis given either by contiguity analysis or PCA is very close
from the x-axis as it was expected. The projected variance on the first axis find by
contiguity analysis is 9.20496 which is also very close to 9. We use BIC in order to
select the dimension of the model and the number of control points using an additive
B-Spline regression. A summary of the tested model is given in the table 1 and the
estimated AAM using B-Spline regression or PCA is drawn in the figures 2 and 3.

Contiguity Analysis PCA
dim BIC Residual Variance BIC Residual Variance

linear 1 9987.13(5) 1.439 11495.8 1.43864
2 10609.7(10) 1.40815

9 1 11247.6(29) 1.06557 11058.4 1.06407
2 11621(58) 1.1086

10 1 11060.7(32) 0.986316 10926.3 0.985777
2 11469(64) 0.913605

11 1 10853.7(35) 0.941064 10855 0.92711
2 11503(70) 0.90682

12 1 10844.6(38) 0.92717 10845(38) 0.941661
2 11525(76) 0.892669

13 1 10871.4(41) 0.929965 10871.6 0.927976
2 11568.4(82) 0.891119

14 1 108887.5(44) 0.927834 10888.3 0.927976
2 11604(88) 0.885939

Table 1 Values of BIC for d = 1 and d = 2 and for various number of control points (given in the first
column). The number of free parameters of each model is given in parenthesis. BIC selects the model of
dimension 1 with 12 control points. The axis of projection can be either obtained by contiguity analysis or
obtained using PCA.

(a) (b)

Fig. 2 (a) The simulated scatter-plot, the estimated AAM (dark grey) and the true AAM (thick grey) using
a contiguity analysis and a B-Spline regression. (b) Results using an usual PCA (the straight line). This
graphic is obtained with R using the draw3d command of the aam library.
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Fig. 3 Estimated regression functions x→ Rk(x) and the scatter plots (xi,yik)
n
i=1 for k = 1,2,3. The true

model is given in the equation 15. This graphic is obtained with R using the draw.regression command of
the aam library.

5.2 Second example on simulated data

In our second example the AAM is given by

(u,v)→
(
u,v,u2 + v2) (16)

and thus P(u,v,w) = (u,v). The first two coordinates of the random vector are sam-
pled from a centered Gaussian distribution with covariance matrix

Σx =

(
0.52 0

0 0.552

)
and n = 1000 points are simulated. An independent noise with standard deviation
σ = 0.2 has then been added to the z coordinate.

The result of the contiguity analysis with k = 3 neighbors is displayed in the
figure 4 (but only the 2-neighbors graph is drawn). The correlation circle shows that
the first component obtains by the contiguity analysis is essentially correlated with
the second variable (y-axis) and that the second component is very correlated with the
first variable (x-axis) and a bit with the third variable (z-axis). The last graphic shows
that in contrast the first component obtain by PCA is essentially correlated with the
z-axis.

The model is estimated using an additive B-Spline regression. BIC selects 6 con-
trol points (40 parameters) and the residual standard deviation is 0.309132 which
overestimate a bit the true level of noise. The true model and the estimated model
obtained with an additive B-Spline regression are given in the figure 5 and compared
with the usual PCA. The figure 6 draw the estimation of the regression functions (R j

k)
for j = 1, . . . ,2 and k = 1,2,3.

5.3 Example in spectrometry analysis

Finally we illustrate the performance of the semi-linear PCA on a real data set. The
data consists of 19-dimensional spectral information of 487 stars Stock and Stock
(1999); Garcia et al (2004); Stock et al (2002); Garcia et al (2008) and they have
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Fig. 4 The AAM components and the 2-neighbors graph, the correlation circle of the AAM components
with the variables and representation of the scatter-plot in the PCA plan. These pictures have been obtained
using the plot command of the aam library.

(a)

(b)

Fig. 5 (a) Result using a contiguity analysis and an additive B-Spline regression. (b) Result using PCA.
These images have been obtained using the draw3d function of the aam library.

been classified in 6 groups. They have been modeled by Scholz et al (2007) using
an auto-associative neural networks based on a 19-30-10-30-19 network. Using the
terminology of this article the model proposed by M. Scholz and its co-authors is an
auto-associative model of dimension 10. We select the model using BIC. The main
results are the following:

1. The axis of projection given by the PCA outperform largely the results we obtain
with the contiguity analysis, for any choice of the number of control points.
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Fig. 6 Estimated regression functions x j → R j
k(x j) and the scatter plots (xi j,yik)

n
i=1 for k = 1,2,3 and j =

1,2. The true model is given in the equation 16. This graphic is obtained with R using the draw.regression
command of the aam library.

2. BIC retains a model of dimension 5 with 9 Control Points (871 parameters) when
we use a non-linear regression step. The residual variance is σ2 = 0.0080763
while the total variance (inertia) of the data was 26.59832.

3. BIC retains a model of dimension 12 (307 parameters) when we use a linear re-
gression step. Observe that in this case, we are performing an usual PCA (theorem
1).

The scatter plot in the main PCA space with the correlation circle and the indi-
viduals regression functions in the plane (6,7) of the PCA. are given in the figure 7.

Fig. 7 Scatter plot in the PCA space, correlation circle of the first two components with the variables and
plane (6,7) of the PCA with the estimated regression functions.
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A summary of some tested model are given in the table 2. We present a visualiza-
tion of some of the estimated regression functions in figure 8. There is 5× 19 = 95
regression functions to plot but we show only the first five variables (y1, . . . ,y5) in
term of the projected variables x = (x1, . . . ,x5). The first projected variable x1 fits
very well the variables y j.

PCA
Control Points BIC dim Residual variance
Linear 1829,95(307) 12 0,0049702
7 1187,26(820) 6 0,00727521
8 1147,62(776) 5 0,00975073
9 453,387(871) 5 0,0080763
10 701,769(966) 5 0,00768342
11 1333,45(1061) 5 0,00773327

Table 2 Values of BIC for various number of control points (given in the first column). BIC selects the
model of dimension 5 with 9 control points using as projection matrix the 5 axis given by PCA. The total
variance (inertia) of the data set was 26.59832.

Fig. 8 The estimated regression functions from R5 to R19. Only the first five dimensions are given.
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6 Conclusion

We have presented a class of auto-associative models for data modeling and visualiza-
tion called semi-linear auto-associative models. We provided theoretical groundings
for these models by proving that the principal component analysis and the probabilis-
tic principal component analysis are special cases. This model allows to model data
set with a simple non-linear component and is truly generative with an underlying
probabilistic interpretation. However it does not allow to model data with a strong
non-linear component and it depends highly on the choice of the projection matrix.

The Semi-Linear PCA have been implemented in C++ using the stk++ library
Iovleff (2012) and is available at: https://sourcesup.renater.fr/projects/
aam/. The program is accompanied with a set of R scripts which allows to simulate
data sets and display the results of the aam program.
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